doi: 10.3934/dcdss.2020389

Segmentation of color images using mean curvature flow and parametric curves

1. 

Czech Technical University in Prague, Trojanova 13,120 00 Prague, Czech Republic

2. 

Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

* Corresponding author: Petr Pauš

Received  January 2019 Revised  February 2020 Published  June 2020

Automatic detection of objects in photos and images is beneficial in various scientific and industrial fields. This contribution suggests an algorithm for segmentation of color images by the means of the parametric mean curvature flow equation and CIE94 color distance function. The parametric approach is enriched by the enhanced algorithm for topological changes where the intersection of curves is computed instead of unreliable curve distance. The result is a set of parametric curves enclosing the object. The algorithm is presented on a test image and also on real photos.

Citation: Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020389
References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.   Google Scholar

[2]

I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar

[3]

K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.  doi: 10.1051/m2an:1999141.  Google Scholar

[4]

K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108.  Google Scholar

[5]

R. McDonald and K. J. Smith, Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.  doi: 10.1111/j.1478-4408.1995.tb01688.x.  Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. doi: 10.1007/b98879.  Google Scholar

[7]

P. Pauš and M. Beneš, Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.   Google Scholar

[8]

P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar

[9]

P. Pauš and S. Yazaki, Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.  doi: 10.14495/jsiaml.7.57.  Google Scholar

[10]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

show all references

References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.   Google Scholar

[2]

I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar

[3]

K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.  doi: 10.1051/m2an:1999141.  Google Scholar

[4]

K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108.  Google Scholar

[5]

R. McDonald and K. J. Smith, Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.  doi: 10.1111/j.1478-4408.1995.tb01688.x.  Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. doi: 10.1007/b98879.  Google Scholar

[7]

P. Pauš and M. Beneš, Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.   Google Scholar

[8]

P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar

[9]

P. Pauš and S. Yazaki, Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.  doi: 10.14495/jsiaml.7.57.  Google Scholar

[10]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

Figure 1.  Algorithm for topological changes of a closed curve $ \Gamma $ which overlaps itself under the external force. The intersections are computed and the overlapping segments of the curve are removed. The resulting two closed curves continue evolution in time
Figure 2.  Original image with white background (left), gray-scale intensity image from a red color (middle), and simple conversion to gray-scale and inversion (right)
Figure 3.  Artificial color image segmentation with the red reference color
Figure 4.  Comparison of the color distance segmentation (left) and simple gray-scale conversion segmentation (right)
Figure 5.  Original yellow flower photo (left), the distance image from a yellow color (middle), and a simple conversion to gray-scale (right)
Figure 6.  Comparison of the color distance segmentation (left) and simple gray-scale conversion segmentation (right) for a yellow flower
Figure 7.  The photo of a cloud and its distance image from the almost white (very light light blue) color
Figure 8.  Segmentation of the original cloud image
Figure 9.  Segmentation of the sunflower with different shades of yellow
[1]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[2]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[3]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[4]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020231

[5]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[6]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[7]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153

[8]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[9]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[10]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[11]

Jun Wang, Wei Wei, Jinju Xu. Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3243-3265. doi: 10.3934/cpaa.2019146

[12]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[13]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure & Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[14]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[15]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[16]

Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1

[17]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

[18]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[19]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[20]

Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (14)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]