doi: 10.3934/dcdss.2020389

Segmentation of color images using mean curvature flow and parametric curves

1. 

Czech Technical University in Prague, Trojanova 13,120 00 Prague, Czech Republic

2. 

Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

* Corresponding author: Petr Pauš

Received  January 2019 Revised  February 2020 Published  June 2020

Automatic detection of objects in photos and images is beneficial in various scientific and industrial fields. This contribution suggests an algorithm for segmentation of color images by the means of the parametric mean curvature flow equation and CIE94 color distance function. The parametric approach is enriched by the enhanced algorithm for topological changes where the intersection of curves is computed instead of unreliable curve distance. The result is a set of parametric curves enclosing the object. The algorithm is presented on a test image and also on real photos.

Citation: Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020389
References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.   Google Scholar

[2]

I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar

[3]

K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.  doi: 10.1051/m2an:1999141.  Google Scholar

[4]

K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108.  Google Scholar

[5]

R. McDonald and K. J. Smith, Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.  doi: 10.1111/j.1478-4408.1995.tb01688.x.  Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. doi: 10.1007/b98879.  Google Scholar

[7]

P. Pauš and M. Beneš, Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.   Google Scholar

[8]

P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar

[9]

P. Pauš and S. Yazaki, Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.  doi: 10.14495/jsiaml.7.57.  Google Scholar

[10]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

show all references

References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.   Google Scholar

[2]

I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar

[3]

K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.  doi: 10.1051/m2an:1999141.  Google Scholar

[4]

K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108.  Google Scholar

[5]

R. McDonald and K. J. Smith, Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.  doi: 10.1111/j.1478-4408.1995.tb01688.x.  Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. doi: 10.1007/b98879.  Google Scholar

[7]

P. Pauš and M. Beneš, Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.   Google Scholar

[8]

P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar

[9]

P. Pauš and S. Yazaki, Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.  doi: 10.14495/jsiaml.7.57.  Google Scholar

[10]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

Figure 1.  Algorithm for topological changes of a closed curve $ \Gamma $ which overlaps itself under the external force. The intersections are computed and the overlapping segments of the curve are removed. The resulting two closed curves continue evolution in time
Figure 2.  Original image with white background (left), gray-scale intensity image from a red color (middle), and simple conversion to gray-scale and inversion (right)
Figure 3.  Artificial color image segmentation with the red reference color
Figure 4.  Comparison of the color distance segmentation (left) and simple gray-scale conversion segmentation (right)
Figure 5.  Original yellow flower photo (left), the distance image from a yellow color (middle), and a simple conversion to gray-scale (right)
Figure 6.  Comparison of the color distance segmentation (left) and simple gray-scale conversion segmentation (right) for a yellow flower
Figure 7.  The photo of a cloud and its distance image from the almost white (very light light blue) color
Figure 8.  Segmentation of the original cloud image
Figure 9.  Segmentation of the sunflower with different shades of yellow
[1]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[4]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[7]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (27)
  • HTML views (187)
  • Cited by (0)

Other articles
by authors

[Back to Top]