March  2021, 14(3): 1123-1132. doi: 10.3934/dcdss.2020389

Segmentation of color images using mean curvature flow and parametric curves

1. 

Czech Technical University in Prague, Trojanova 13,120 00 Prague, Czech Republic

2. 

Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

* Corresponding author: Petr Pauš

Received  January 2019 Revised  February 2020 Published  June 2020

Automatic detection of objects in photos and images is beneficial in various scientific and industrial fields. This contribution suggests an algorithm for segmentation of color images by the means of the parametric mean curvature flow equation and CIE94 color distance function. The parametric approach is enriched by the enhanced algorithm for topological changes where the intersection of curves is computed instead of unreliable curve distance. The result is a set of parametric curves enclosing the object. The algorithm is presented on a test image and also on real photos.

Citation: Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389
References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.   Google Scholar

[2]

I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar

[3]

K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.  doi: 10.1051/m2an:1999141.  Google Scholar

[4]

K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108.  Google Scholar

[5]

R. McDonald and K. J. Smith, Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.  doi: 10.1111/j.1478-4408.1995.tb01688.x.  Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. doi: 10.1007/b98879.  Google Scholar

[7]

P. Pauš and M. Beneš, Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.   Google Scholar

[8]

P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar

[9]

P. Pauš and S. Yazaki, Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.  doi: 10.14495/jsiaml.7.57.  Google Scholar

[10]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

show all references

References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.   Google Scholar

[2]

I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar

[3]

K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.  doi: 10.1051/m2an:1999141.  Google Scholar

[4]

K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108.  Google Scholar

[5]

R. McDonald and K. J. Smith, Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.  doi: 10.1111/j.1478-4408.1995.tb01688.x.  Google Scholar

[6]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. doi: 10.1007/b98879.  Google Scholar

[7]

P. Pauš and M. Beneš, Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.   Google Scholar

[8]

P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar

[9]

P. Pauš and S. Yazaki, Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.  doi: 10.14495/jsiaml.7.57.  Google Scholar

[10]

D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

Figure 1.  Algorithm for topological changes of a closed curve $ \Gamma $ which overlaps itself under the external force. The intersections are computed and the overlapping segments of the curve are removed. The resulting two closed curves continue evolution in time
Figure 2.  Original image with white background (left), gray-scale intensity image from a red color (middle), and simple conversion to gray-scale and inversion (right)
Figure 3.  Artificial color image segmentation with the red reference color
Figure 4.  Comparison of the color distance segmentation (left) and simple gray-scale conversion segmentation (right)
Figure 5.  Original yellow flower photo (left), the distance image from a yellow color (middle), and a simple conversion to gray-scale (right)
Figure 6.  Comparison of the color distance segmentation (left) and simple gray-scale conversion segmentation (right) for a yellow flower
Figure 7.  The photo of a cloud and its distance image from the almost white (very light light blue) color
Figure 8.  Segmentation of the original cloud image
Figure 9.  Segmentation of the sunflower with different shades of yellow
[1]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[2]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[3]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[4]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[5]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[6]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[7]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[9]

Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3737-3765. doi: 10.3934/dcdsb.2020255

[10]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[11]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031

[12]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[13]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[14]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[15]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[16]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[17]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[18]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[19]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[20]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (70)
  • HTML views (266)
  • Cited by (0)

Other articles
by authors

[Back to Top]