
-
Previous Article
Convergence of a blow-up curve for a semilinear wave equation
- DCDS-S Home
- This Issue
-
Next Article
Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs
Segmentation of color images using mean curvature flow and parametric curves
1. | Czech Technical University in Prague, Trojanova 13,120 00 Prague, Czech Republic |
2. | Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan |
Automatic detection of objects in photos and images is beneficial in various scientific and industrial fields. This contribution suggests an algorithm for segmentation of color images by the means of the parametric mean curvature flow equation and CIE94 color distance function. The parametric approach is enriched by the enhanced algorithm for topological changes where the intersection of curves is computed instead of unreliable curve distance. The result is a set of parametric curves enclosing the object. The algorithm is presented on a test image and also on real photos.
References:
[1] |
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki,
Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.
|
[2] |
I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar |
[3] |
K. Deckelnick and G. Dziuk,
Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.
doi: 10.1051/m2an:1999141. |
[4] |
K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108. |
[5] |
R. McDonald and K. J. Smith,
Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.
doi: 10.1111/j.1478-4408.1995.tb01688.x. |
[6] |
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003.
doi: 10.1007/b98879. |
[7] |
P. Pauš and M. Beneš,
Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.
|
[8] |
P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar |
[9] |
P. Pauš and S. Yazaki,
Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.
doi: 10.14495/jsiaml.7.57. |
[10] |
D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119. |
[11] |
D. Ševčovič and S. Yazaki,
Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.
doi: 10.1007/s13160-011-0046-9. |
show all references
References:
[1] |
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki,
Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2008 (2008), 509-523.
|
[2] |
I. C. Consortium and et al., Specification icc. 1: 2004-10, (profile version 4.2. 0.0): Image technology colour management, 2004. Google Scholar |
[3] |
K. Deckelnick and G. Dziuk,
Discrete anisotropic curvature flow of graphs, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 1203-1222.
doi: 10.1051/m2an:1999141. |
[4] |
K. Deckelnick and G. Dziuk, Mean curvature flow and related topics, Frontiers in Numerical Analysis, Universitext, Springer, Berlin, (2002), 63–108. |
[5] |
R. McDonald and K. J. Smith,
Cie94-a new colour-difference formula, Journal of the Society of Dyers and Colourists, 111 (1995), 376-379.
doi: 10.1111/j.1478-4408.1995.tb01688.x. |
[6] |
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003.
doi: 10.1007/b98879. |
[7] |
P. Pauš and M. Beneš,
Direct approach to mean-curvature flow with topological changes, Kybernetika (Prague), 45 (2009), 591-604.
|
[8] |
P. Pauš and M. Beneš, Algorithm for topological changes of parametrically described curves, Proceedings of ALGORITMY, (2009), 176–184. Google Scholar |
[9] |
P. Pauš and S. Yazaki,
Exact solution for dislocation bowing and a posteriori numerical technique for dislocation touching-splitting, JSIAM Letters, 7 (2015), 57-60.
doi: 10.14495/jsiaml.7.57. |
[10] |
D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, Topics on Partial Differential Equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, MatFyzPress, Prague, 2 (2007), 55–119. |
[11] |
D. Ševčovič and S. Yazaki,
Evolution of plane curves with a curvature adjusted tangential velocity, Japan Journal of Industrial and Applied Mathematics, 28 (2011), 413-442.
doi: 10.1007/s13160-011-0046-9. |









[1] |
Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231 |
[2] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[3] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[4] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[5] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[6] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[7] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[8] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[9] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[10] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[11] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[12] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[13] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[14] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[15] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[16] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[17] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[18] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[19] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[20] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]