# American Institute of Mathematical Sciences

• Previous Article
Numerical and mathematical analysis of blow-up problems for a stochastic differential equation
• DCDS-S Home
• This Issue
• Next Article
A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies
March  2021, 14(3): 893-907. doi: 10.3934/dcdss.2020390

## Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow

 1 Department of Mathematical Sciences, Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama 337-8570, Japan 2 Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Aramaki-machi 4-2, Maebashi, 371-8510 Gunma, Japan

* Corresponding author: Takeshi Ohtsuka

Received  January 2019 Revised  February 2020 Published  June 2020

In this paper, the evolution of a polygonal spiral curve by the crystalline curvature flow with a pinned center is considered from two viewpoints; a discrete model consisting of an ODE system describing facet lengths and another using level set method. We investigate the difference of these models numerically by calculating the area of an interposed region by their spiral curves. The area difference is calculated by the normalized $L^1$ norm of the difference of step-like functions which are branches of $\arg (x)$ whose discontinuities are on the spirals. We find that the differences in the numerical results are small, even though the model equations around the center and the farthest facet are slightly different.

Citation: Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390
##### References:

show all references

##### References:
A figure of two spirals (the solid and dashed lines) and the interposed region by them. The function $\mathcal{D} (t)$ indicates the area of the gray regions
Description of $\Gamma_D = \bigcup_{j = 0}^k L_j (t)$. Note that, for the simplicity, the variable $t$ of $L_j$ and $y_j$ is omitted in the above figure
Construction of $\theta_D (t, x)$; we construct a branch of $\arg (x)$ whose discontinuities are only on $\Gamma (t)$(the dashed line in (1)). For this purpose we first construct $\vartheta (x) = \arg (x)$ whose discontinuities are only on $\mathcal{L}_k (t)$ (the solid line in (2)). Then, we make go down the height of $\vartheta (x)$ on $R_{j} (t)$ (the gray region in (3) or (4)) with the jump-height $2 \pi$ from $j = k-1$ to $j = 0$ inductively to remove illegal discontinuities. The solid line in figure (3) or (4) denotes the discontinuity of $\Theta_{k,k-1}$ or $\Theta_{k,k-2}$, respectively
Profiles of the square spiral at $t = 1$. The level set method is calculated using $\rho = 0.02$ and $\Delta x = 0.0050$
Graphs of functions $\mathcal{D} (t)$ for the square spiral with a fixed center radius $\rho = 0.02$(left), and with a reduced center radius $\rho = 2 \Delta x$(right)
Profiles of the diagonal spiral at $t = 1$. The level set method is calculated using $\rho = 0.02$ and $\Delta x = 0.0050$
Graphs of $\mathcal{D}(t)$ for the diagonal spiral with a fixed center radius $\rho = 0.02$(left), and with a reduced center radius $\rho = 4 \Delta x$(right)
Profiles of the triangle spiral at $t = 0.8$. The level set method is calculated using $\rho = 0.02$ and $\Delta x = 0.0050$
Graphs of $\mathcal{D} (t)$ for the triangle spiral with a fixed center radius $\rho = 0.02$(left), and with a reduced center radius $\rho = 4\Delta x$(right)
 [1] Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 [2] Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 [3] Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 [4] Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 [5] Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 [6] Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 [7] Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 [8] Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 [9] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 [10] Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 [11] Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108 [12] Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049 [13] Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 [14] Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400 [15] Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 [16] Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 [17] Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 [18] Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 [19] Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 [20] Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables