
-
Previous Article
Numerical and mathematical analysis of blow-up problems for a stochastic differential equation
- DCDS-S Home
- This Issue
-
Next Article
A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies
Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
1. | Department of Mathematical Sciences, Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama 337-8570, Japan |
2. | Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Aramaki-machi 4-2, Maebashi, 371-8510 Gunma, Japan |
In this paper, the evolution of a polygonal spiral curve by the crystalline curvature flow with a pinned center is considered from two viewpoints; a discrete model consisting of an ODE system describing facet lengths and another using level set method. We investigate the difference of these models numerically by calculating the area of an interposed region by their spiral curves. The area difference is calculated by the normalized $ L^1 $ norm of the difference of step-like functions which are branches of $ \arg (x) $ whose discontinuities are on the spirals. We find that the differences in the numerical results are small, even though the model equations around the center and the farthest facet are slightly different.
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
S. Angenent and M. E. Gurtin,
Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068. |
[4] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[5] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97. |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione,
Existence and uniqueness for anisotropic and crystalline mean curvature flows, J. Amer. Math. Soc., 32 (2019), 779-824.
doi: 10.1090/jams/919. |
[7] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[8] |
B. Engquist, A.-K. Tornberg and R. Tsai,
Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[9] |
M.-H. Giga and Y. Giga,
Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154. |
[10] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006. |
[11] |
Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631–698, http://projecteuclid.org/euclid.ade/1462298654. |
[12] |
S. Goto, M. Nakagawa and T. Ohtsuka,
Uniqueness and existence of generalized motion for spiral crystal growth, Indiana University Mathematics Journal, 57 (2008), 2571-2599.
doi: 10.1512/iumj.2008.57.3350. |
[13] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. |
[14] |
T. Ishiwata,
Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53. |
[15] |
T. Ishiwata and T. Ohtsuka,
Evolution of spiral-shaped polygonal curve by crystalline curvature flow with a pinned tip, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5261-5295.
doi: 10.3934/dcdsb.2019058. |
[16] |
A. Oberman, S. Osher, R. Takei and R. Tsai,
Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1. |
[17] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2. |
[18] |
T. Ohtsuka,
A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
|
[19] |
T. Ohtsuka, Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317. Google Scholar |
[20] |
T. Ohtsuka, Minimizing movement approach without using distance function for evolving spirals by the crystalline curvature with driving force, RIMS Kôkyûroku No.2121, 74–87, http://www.kurims.kyoto-u.ac.jp/ kyodo/kokyuroku/contents/pdf/2121-06.pdf. Google Scholar |
[21] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
Growth rate of crystal surfaces with several dislocation centers, Crystal Growth & Design, 18 (2018), 1917-1929.
doi: 10.1021/acs.cgd.7b00833. |
[22] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[23] |
J. E. Taylor,
Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., Longman Sci. Tech., Harlow, 52 (1991), 321-336.
|
show all references
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
S. Angenent and M. E. Gurtin,
Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068. |
[4] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[5] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97. |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione,
Existence and uniqueness for anisotropic and crystalline mean curvature flows, J. Amer. Math. Soc., 32 (2019), 779-824.
doi: 10.1090/jams/919. |
[7] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[8] |
B. Engquist, A.-K. Tornberg and R. Tsai,
Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[9] |
M.-H. Giga and Y. Giga,
Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154. |
[10] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006. |
[11] |
Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631–698, http://projecteuclid.org/euclid.ade/1462298654. |
[12] |
S. Goto, M. Nakagawa and T. Ohtsuka,
Uniqueness and existence of generalized motion for spiral crystal growth, Indiana University Mathematics Journal, 57 (2008), 2571-2599.
doi: 10.1512/iumj.2008.57.3350. |
[13] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. |
[14] |
T. Ishiwata,
Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53. |
[15] |
T. Ishiwata and T. Ohtsuka,
Evolution of spiral-shaped polygonal curve by crystalline curvature flow with a pinned tip, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5261-5295.
doi: 10.3934/dcdsb.2019058. |
[16] |
A. Oberman, S. Osher, R. Takei and R. Tsai,
Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1. |
[17] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2. |
[18] |
T. Ohtsuka,
A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
|
[19] |
T. Ohtsuka, Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317. Google Scholar |
[20] |
T. Ohtsuka, Minimizing movement approach without using distance function for evolving spirals by the crystalline curvature with driving force, RIMS Kôkyûroku No.2121, 74–87, http://www.kurims.kyoto-u.ac.jp/ kyodo/kokyuroku/contents/pdf/2121-06.pdf. Google Scholar |
[21] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
Growth rate of crystal surfaces with several dislocation centers, Crystal Growth & Design, 18 (2018), 1917-1929.
doi: 10.1021/acs.cgd.7b00833. |
[22] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[23] |
J. E. Taylor,
Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., Longman Sci. Tech., Harlow, 52 (1991), 321-336.
|









[1] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[2] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[3] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[4] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[5] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[6] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[7] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[8] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[9] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[10] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[11] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[12] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[13] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[14] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[15] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[16] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[17] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[18] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[19] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[20] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]