• Previous Article
    A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies
  • DCDS-S Home
  • This Issue
  • Next Article
    Oscillation criteria for kernel function dependent fractional dynamic equations
doi: 10.3934/dcdss.2020391

Numerical and mathematical analysis of blow-up problems for a stochastic differential equation

Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan

* Corresponding author: Young Chol Yang

Received  January 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is partly supported by JSPS KAKENHI Grant number 15H03632 and 19H05599

We consider the blow-up problems of the power type of stochastic differential equation, $ dX = \alpha X^p(t)dt+X^q(t)dW(t) $. It has been known that there exists a critical exponent such that if $ p $ is greater than the critical exponent then the solution $ X(t) $ blows up almost surely in the finite time. In our research, focus on this critical exponent, we propose a numerical scheme by adaptive time step and analyze it mathematically. Finally we show the numerical result by using the proposed scheme.

Citation: Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020391
References:
[1]

J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in nonlinear stochastic differential equations with unbounded noise, Stochastics, 81 (2009), 99-127. doi: 10.1080/17442500802088541.  Google Scholar

[2]

J. A. D. ApplebyX. R. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Trans. Automat. Control, 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[3]

J. DavilaJ. F. BonderJ. D. RossiP. Groisman and M. Sued, Numerical analysis of Stochastic differential equations with explosions, Stochastic Analysis and Applications, 23 (2005), 809-825.  doi: 10.1081/SAP-200064484.  Google Scholar

[4]

P. Groisman and J. D. Rossi., Explosion time in stochastic differential equations with small diffusion, Electoric Journal of Differential Equations, 2007 (2007), 9 pp.  Google Scholar

[5]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition, Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[6]

C. KellyA. Rodkina and E. M. Rapoo, Adaptive timestepping for pathwise stability and positivity of strongly discretised nonlinear stochastic differential equations, J. Comput. Appl. Math., 334 (2018), 39-57.  doi: 10.1016/j.cam.2017.11.027.  Google Scholar

[7]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), 23. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[8]

J. E. Macías-Díaz and J. Villa-Morales, Finite-difference modeling à la Mickens of the distribution of the stopping time in a stochastic differential equation, Journal of Difference Equations and Applications, 23 (2017), 799-820.  doi: 10.1080/10236198.2017.1284828.  Google Scholar

[9]

J. M. Sanz-Serna and J. G. Verwer, A study of the recursion $y_{n+1}=y_n+\tau{y_n^m}$, J. Math. Anal. Appl., 116 (1986), 456-464.  doi: 10.1016/S0022-247X(86)80010-5.  Google Scholar

show all references

References:
[1]

J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in nonlinear stochastic differential equations with unbounded noise, Stochastics, 81 (2009), 99-127. doi: 10.1080/17442500802088541.  Google Scholar

[2]

J. A. D. ApplebyX. R. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise, IEEE Trans. Automat. Control, 53 (2008), 683-691.  doi: 10.1109/TAC.2008.919255.  Google Scholar

[3]

J. DavilaJ. F. BonderJ. D. RossiP. Groisman and M. Sued, Numerical analysis of Stochastic differential equations with explosions, Stochastic Analysis and Applications, 23 (2005), 809-825.  doi: 10.1081/SAP-200064484.  Google Scholar

[4]

P. Groisman and J. D. Rossi., Explosion time in stochastic differential equations with small diffusion, Electoric Journal of Differential Equations, 2007 (2007), 9 pp.  Google Scholar

[5]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition, Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[6]

C. KellyA. Rodkina and E. M. Rapoo, Adaptive timestepping for pathwise stability and positivity of strongly discretised nonlinear stochastic differential equations, J. Comput. Appl. Math., 334 (2018), 39-57.  doi: 10.1016/j.cam.2017.11.027.  Google Scholar

[7]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), 23. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[8]

J. E. Macías-Díaz and J. Villa-Morales, Finite-difference modeling à la Mickens of the distribution of the stopping time in a stochastic differential equation, Journal of Difference Equations and Applications, 23 (2017), 799-820.  doi: 10.1080/10236198.2017.1284828.  Google Scholar

[9]

J. M. Sanz-Serna and J. G. Verwer, A study of the recursion $y_{n+1}=y_n+\tau{y_n^m}$, J. Math. Anal. Appl., 116 (1986), 456-464.  doi: 10.1016/S0022-247X(86)80010-5.  Google Scholar

Figure 1.  Numerical solutions (4 samples)
Figure 2.  Numerical Brownian motion
Figure 3.  Histogram of $ T_\tau^L $ and exact distribution of blow-up time (green)
Figure 4.  Numerical solutions (3 samples)
Figure 5.  Numerical Brownian motion
Figure 6.  Distribution of numerical blow-up time
Figure 7.  The number of non-blow-up solutions with fixed $ T_{\max} = 1000 $
Figure 8.  The number of non-blow-up solutions with fixed $ L = 1000 $
Table 1.  Numerical paramaters at numerical blow-up time
Sample No. $ X_n $ $ T_\tau^L $ $ |W_n-M| $
1 $ 1000.343314 $ $ 0.043027 $ $ 0.00076978 $
2 $ 1000.154401 $ $ 0.39964 $ $ 0.0007528 $
3 $ 1000.61063 $ $ 0.0209 $ $ 0.00040622 $
4 $ 1000.101781 $ $ 0.166273 $ $ 0.00045478 $
Sample No. $ X_n $ $ T_\tau^L $ $ |W_n-M| $
1 $ 1000.343314 $ $ 0.043027 $ $ 0.00076978 $
2 $ 1000.154401 $ $ 0.39964 $ $ 0.0007528 $
3 $ 1000.61063 $ $ 0.0209 $ $ 0.00040622 $
4 $ 1000.101781 $ $ 0.166273 $ $ 0.00045478 $
Table 2.  The number of Blow-up solutions with fixed $ T_{max} = 1000 $
$ a $ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$ L=100 $ 977 941 888 791 665 486 369 226 118
$ L=1000 $ 995 988 968 880 756 566 377 223 122
$ a $ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$ L=100 $ 977 941 888 791 665 486 369 226 118
$ L=1000 $ 995 988 968 880 756 566 377 223 122
Table 3.  The number of non-blow-up solutions with fixed $ L = 1000 $
$ a $ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$ T_{\max}=100 $ 995 988 968 880 756 566 377 223 122
$ T_{\max}=1000 $ 996 989 940 848 668 401 234 105 44
$ a $ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$ T_{\max}=100 $ 995 988 968 880 756 566 377 223 122
$ T_{\max}=1000 $ 996 989 940 848 668 401 234 105 44
[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[13]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (34)
  • HTML views (218)
  • Cited by (0)

Other articles
by authors

[Back to Top]