We consider the existence of a symmetric periodic solution for the following distributed delay differential equation
$ x^{\prime}(t) = -f\left(\int_{0}^{1}x(t-s)ds\right), $
where $ f(x) = r\sin x $ with $ r>0 $. It is shown that the well studied second order ordinary differential equation, known as the nonlinear pendulum equation, derives a symmetric periodic solution of period $ 2 $, expressed in terms of the Jacobi elliptic functions, for the delay differential equation. We here apply the approach in Kaplan and Yorke (1974) for a differential equation with discrete delay to the distributed delay differential equation.
Citation: |
[1] |
D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theo. Diff. Equ., 2016 (2016), 24 pp.
doi: 10.14232/ejqtde.2016.1.65.![]() ![]() ![]() |
[2] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.
![]() ![]() |
[3] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2.![]() ![]() ![]() |
[4] |
P. Dormayer and A. F. Ivanov, Symmetric periodic solutions of a delay differential equation, Dynamical Systems and Differential Equations, Discrete Contin. Dynam. Systems, 1 (1998), 220-230.
![]() ![]() |
[5] |
P. Dormayer and A. F. Ivanov, Stability of symmetric periodic solutions with small amplitude of $x^{\prime}(t) = \alpha f(x(t), x(t-1))$, Discrete Contin. Dynam. Systems, 5 (1999), 61-82.
doi: 10.3934/dcds.1999.5.61.![]() ![]() ![]() |
[6] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.![]() ![]() ![]() |
[7] |
J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0.![]() ![]() ![]() |
[8] |
B. B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theo. Diff. Equ., 2014 (2014), 18 pp.
doi: 10.14232/ejqtde.2014.1.4.![]() ![]() ![]() |
[9] |
J. B. Li and X. Z. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition $f^{\prime}(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A., 42 (1999), 957-964.
doi: 10.1007/BF02880387.![]() ![]() ![]() |
[10] |
K. R. Meyer, Jacobi elliptic functions from a dynamical systems point of view, The American Mathematical Monthly, 108 (2001), 729-737.
doi: 10.1080/00029890.2001.11919804.![]() ![]() ![]() |
[11] |
R. E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, 37. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/2778.![]() ![]() ![]() |
[12] |
Y. Nakata, An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equ., 32 (2020), 163-179.
doi: 10.1007/s10884-018-9681-z.![]() ![]() ![]() |
[13] |
R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. (4), 101 (1974), 263-306.
doi: 10.1007/BF02417109.![]() ![]() ![]() |
[14] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.
![]() ![]() |
[15] |
H.-O. Walther, Topics in delay differential equations, Jahresbericht Der Deutschen Mathematiker-Vereinigung, 116 (2014), 87-114.
doi: 10.1365/s13291-014-0086-6.![]() ![]() ![]() |
[16] |
J. S. Yu, A note on periodic solutions of the delay differential equation $x^{\prime}(t)=f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2012), 1281-1288.
doi: 10.1090/S0002-9939-2012-11386-3.![]() ![]() ![]() |
Symmetric periodic solutions of (2.1) and (1.3)
An SSPS attracts two solutions with different initial conditions (