\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of a period two solution of a delay differential equation

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We consider the existence of a symmetric periodic solution for the following distributed delay differential equation

    $ x^{\prime}(t) = -f\left(\int_{0}^{1}x(t-s)ds\right), $

    where $ f(x) = r\sin x $ with $ r>0 $. It is shown that the well studied second order ordinary differential equation, known as the nonlinear pendulum equation, derives a symmetric periodic solution of period $ 2 $, expressed in terms of the Jacobi elliptic functions, for the delay differential equation. We here apply the approach in Kaplan and Yorke (1974) for a differential equation with discrete delay to the distributed delay differential equation.

    Mathematics Subject Classification: 34K13.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 2.1.  Symmetric periodic solutions of (2.1) and (1.3)

    Figure 4.1.  An SSPS attracts two solutions with different initial conditions ($ r = 8 $)

  • [1] D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theo. Diff. Equ., 2016 (2016), 24 pp. doi: 10.14232/ejqtde.2016.1.65.
    [2] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.
    [3] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.
    [4] P. Dormayer and A. F. Ivanov, Symmetric periodic solutions of a delay differential equation, Dynamical Systems and Differential Equations, Discrete Contin. Dynam. Systems, 1 (1998), 220-230. 
    [5] P. Dormayer and A. F. Ivanov, Stability of symmetric periodic solutions with small amplitude of $x^{\prime}(t) = \alpha f(x(t), x(t-1))$, Discrete Contin. Dynam. Systems, 5 (1999), 61-82.  doi: 10.3934/dcds.1999.5.61.
    [6] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.
    [7] J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.  doi: 10.1016/0022-247X(74)90162-0.
    [8] B. B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theo. Diff. Equ., 2014 (2014), 18 pp. doi: 10.14232/ejqtde.2014.1.4.
    [9] J. B. Li and X. Z. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition $f^{\prime}(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A., 42 (1999), 957-964.  doi: 10.1007/BF02880387.
    [10] K. R. Meyer, Jacobi elliptic functions from a dynamical systems point of view, The American Mathematical Monthly, 108 (2001), 729-737.  doi: 10.1080/00029890.2001.11919804.
    [11] R. E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, 37. World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/2778.
    [12] Y. Nakata, An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equ., 32 (2020), 163-179.  doi: 10.1007/s10884-018-9681-z.
    [13] R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. (4), 101 (1974), 263-306.  doi: 10.1007/BF02417109.
    [14] S. H. StrogatzNonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015. 
    [15] H.-O. Walther, Topics in delay differential equations, Jahresbericht Der Deutschen Mathematiker-Vereinigung, 116 (2014), 87-114.  doi: 10.1365/s13291-014-0086-6.
    [16] J. S. Yu, A note on periodic solutions of the delay differential equation $x^{\prime}(t)=f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2012), 1281-1288.  doi: 10.1090/S0002-9939-2012-11386-3.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(625) PDF downloads(364) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return