
-
Previous Article
Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs
- DCDS-S Home
- This Issue
-
Next Article
An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow
Existence of a period two solution of a delay differential equation
Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan |
$ x^{\prime}(t) = -f\left(\int_{0}^{1}x(t-s)ds\right), $ |
$ f(x) = r\sin x $ |
$ r>0 $ |
$ 2 $ |
References:
[1] |
D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theo. Diff. Equ., 2016 (2016), 24 pp.
doi: 10.14232/ejqtde.2016.1.65. |
[2] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. |
[3] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[4] |
P. Dormayer and A. F. Ivanov,
Symmetric periodic solutions of a delay differential equation, Dynamical Systems and Differential Equations, Discrete Contin. Dynam. Systems, 1 (1998), 220-230.
|
[5] |
P. Dormayer and A. F. Ivanov,
Stability of symmetric periodic solutions with small amplitude of $x^{\prime}(t) = \alpha f(x(t), x(t-1))$, Discrete Contin. Dynam. Systems, 5 (1999), 61-82.
doi: 10.3934/dcds.1999.5.61. |
[6] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[7] |
J. L. Kaplan and J. A. Yorke,
Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[8] |
B. B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theo. Diff. Equ., 2014 (2014), 18 pp.
doi: 10.14232/ejqtde.2014.1.4. |
[9] |
J. B. Li and X. Z. He,
Proof and generalization of Kaplan-Yorke's conjecture under the condition $f^{\prime}(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A., 42 (1999), 957-964.
doi: 10.1007/BF02880387. |
[10] |
K. R. Meyer,
Jacobi elliptic functions from a dynamical systems point of view, The American Mathematical Monthly, 108 (2001), 729-737.
doi: 10.1080/00029890.2001.11919804. |
[11] |
R. E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, 37. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/2778. |
[12] |
Y. Nakata,
An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equ., 32 (2020), 163-179.
doi: 10.1007/s10884-018-9681-z. |
[13] |
R. D. Nussbaum,
Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. (4), 101 (1974), 263-306.
doi: 10.1007/BF02417109. |
[14] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.
![]() |
[15] |
H.-O. Walther,
Topics in delay differential equations, Jahresbericht Der Deutschen Mathematiker-Vereinigung, 116 (2014), 87-114.
doi: 10.1365/s13291-014-0086-6. |
[16] |
J. S. Yu,
A note on periodic solutions of the delay differential equation $x^{\prime}(t)=f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2012), 1281-1288.
doi: 10.1090/S0002-9939-2012-11386-3. |
show all references
References:
[1] |
D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theo. Diff. Equ., 2016 (2016), 24 pp.
doi: 10.14232/ejqtde.2016.1.65. |
[2] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. |
[3] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[4] |
P. Dormayer and A. F. Ivanov,
Symmetric periodic solutions of a delay differential equation, Dynamical Systems and Differential Equations, Discrete Contin. Dynam. Systems, 1 (1998), 220-230.
|
[5] |
P. Dormayer and A. F. Ivanov,
Stability of symmetric periodic solutions with small amplitude of $x^{\prime}(t) = \alpha f(x(t), x(t-1))$, Discrete Contin. Dynam. Systems, 5 (1999), 61-82.
doi: 10.3934/dcds.1999.5.61. |
[6] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[7] |
J. L. Kaplan and J. A. Yorke,
Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[8] |
B. B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theo. Diff. Equ., 2014 (2014), 18 pp.
doi: 10.14232/ejqtde.2014.1.4. |
[9] |
J. B. Li and X. Z. He,
Proof and generalization of Kaplan-Yorke's conjecture under the condition $f^{\prime}(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A., 42 (1999), 957-964.
doi: 10.1007/BF02880387. |
[10] |
K. R. Meyer,
Jacobi elliptic functions from a dynamical systems point of view, The American Mathematical Monthly, 108 (2001), 729-737.
doi: 10.1080/00029890.2001.11919804. |
[11] |
R. E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, 37. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/2778. |
[12] |
Y. Nakata,
An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equ., 32 (2020), 163-179.
doi: 10.1007/s10884-018-9681-z. |
[13] |
R. D. Nussbaum,
Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. (4), 101 (1974), 263-306.
doi: 10.1007/BF02417109. |
[14] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.
![]() |
[15] |
H.-O. Walther,
Topics in delay differential equations, Jahresbericht Der Deutschen Mathematiker-Vereinigung, 116 (2014), 87-114.
doi: 10.1365/s13291-014-0086-6. |
[16] |
J. S. Yu,
A note on periodic solutions of the delay differential equation $x^{\prime}(t)=f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2012), 1281-1288.
doi: 10.1090/S0002-9939-2012-11386-3. |


[1] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[2] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[3] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[4] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[5] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[6] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[7] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[8] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[9] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[10] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[11] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[12] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[13] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[14] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[15] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[16] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[17] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[18] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[19] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[20] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]