This investigation looks at the issue of finite time exponential synchronization of complex dynamical systems with reaaction diffusion term. This reort studies complex networks consisting of $ N $ straightly and diffusively coupled networks. By building a new Lyapunov krasovskii functional (LKF), using Jensens inequality and convex algorithms approach stability conditions frameworks are determined. At last, a numerical precedent is given to demonstrate the practicality of the theoretical results.
Citation: |
[1] |
M. S. Ali, N. Gunasekaran and R. Saravanakumar, Design of passivity and passification for delayed neural networks with markovian jump parameters via non-uniform sampled-data control, Neural Computing and Applications, 30 (2018), 595-605.
doi: 10.1007/s00521-016-2682-0.![]() ![]() |
[2] |
M. S. Ali, N. Gunasekaran and Q. X. Zhu, State estimation of T–S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control, Fuzzy Sets and Systems, 306 (2017), 87-104.
doi: 10.1016/j.fss.2016.03.012.![]() ![]() ![]() |
[3] |
M. S. Ali, N. Gunasekaran and M. E. Rani, Robust stability of Hopfield delayed neural networks via an augmented LK functional, Neurocomputing, 234 (2017), 198-204.
![]() |
[4] |
M. Syed Ali, K. Meenakshi, N. Gunasekaran and M. Usha, Finite-time passivity of discrete-time TS fuzzy neural networks with time-varying delays, Iranian Journal of Fuzzy Systems, 15 (2018), 93-107.
![]() ![]() |
[5] |
M. Syed Ali, Q. X. Zhu, S. Pavithra and N. Gunasekaran, A study on $(Q, S, R)-\gamma$-dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays, International Journal of Systems Science, 49 (2018), 755-765.
doi: 10.1080/00207721.2017.1422814.![]() ![]() ![]() |
[6] |
P. Balasubramaniam and L. J. Banu, Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties, Cognitive Neurodynamics, 8 (2014), 199-215.
doi: 10.1007/s11571-013-9272-y.![]() ![]() |
[7] |
M. Fang, Synchronization for complex dynamical networks with time delay and discrete-time information, Applied Mathematics and Computation, 258 (2015), 1-11.
doi: 10.1016/j.amc.2015.01.106.![]() ![]() ![]() |
[8] |
D. W. Gong, H. G. Zhang, Z. S. Wang and J. H. Liu, Synchronization analysis for complex networks with coupling delay based on T–S fuzzy theory, Applied Mathematical Modelling, 36 (2012), 6215-6224.
doi: 10.1016/j.apm.2012.01.041.![]() ![]() ![]() |
[9] |
N. Gunasekaran, M. Syed Ali and S. Pavithra, Finite-time $L_\infty$ performance state estimation of recurrent neural networks with sampled-data signals, Neural Processing Letters, 51 (2019), 1379-1392.
doi: 10.1007/s11063-019-10114-9.![]() ![]() |
[10] |
W. He and J. Cao, Exponential synchronization of hybrid coupled networks with delayed coupling, IEEE Transactions on Neural Networks, 21 (2010), 571-583.
![]() |
[11] |
B. N. Huang, H. G. Zhang, D. W. Gong and J. Y. Wang, Synchronization analysis for static neural networks with hybrid couplings and time delays, Neurocomputing, 148 (2015), 288-293.
doi: 10.1016/j.neucom.2013.11.053.![]() ![]() |
[12] |
D. H. Ji, J. H. Park, W. J. Yoo, S. C. Won and S. M. Lee, Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay, Physics Letters A, 374 (2010), 1218-1227.
doi: 10.1016/j.physleta.2010.01.005.![]() ![]() |
[13] |
Y.-G. Kao, J.-F. Guo, C.-H. Wang and X.-Q. Sun, Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen–Grossberg neural networks with mixed delays, Journal of the Franklin Institute, 349 (2012), 1972-1988.
doi: 10.1016/j.jfranklin.2012.04.005.![]() ![]() ![]() |
[14] |
T. H. Lee, J. H. Park, H. Y. Jung, S. M. Lee and O. M. Kwon, Synchronization of a delayed complex dynamical network with free coupling matrix, Nonlinear Dynamics, 69 (2012), 1081-1090.
doi: 10.1007/s11071-012-0328-z.![]() ![]() ![]() |
[15] |
J. G. Lu, Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with dirichlet boundary conditions, Chaos Solitons Fractals, 35 (2008), 116-125.
doi: 10.1016/j.chaos.2007.05.002.![]() ![]() ![]() |
[16] |
N. N. Ma, Z. B. Liu and L. Chen, Finite-time $H_\infty$ synchronization for complex dynamical networks with markovian jump parameter, Journal of Control, Automation and Electrical Systems, 30 (2019), 75-84.
doi: 10.1007/s40313-018-00428-9.![]() ![]() |
[17] |
F. Z. Nian and X. Y. Wang, Chaotic synchronization of hybrid state on complex networks, International Journal of Modern Physics C, 21 (2010), 457-469.
doi: 10.1142/S0129183110015221.![]() ![]() ![]() |
[18] |
M.-J. Park, O. M. Kwon, J. H. Park, S.-M. Lee and E.-J. Cha, Synchronization criteria of fuzzy complex dynamical networks with interval time-varying delays, Applied Mathematics and Computation, 218 (2012), 11634-11647.
doi: 10.1016/j.amc.2012.05.046.![]() ![]() ![]() |
[19] |
L. Scheeffer, Ueber die bedeutung der begriffe maximum und minimum iin der variationsrechnung, Mathematische Annalen, 26 (1886), 197-208.
doi: 10.1007/BF01444332.![]() ![]() ![]() |
[20] |
J. Shen and J. Cao, Finite-time synchronization of coupled neural networks via discontinuous controllers, Cognitive Neurodynamics, 5 (2011), 373-385.
doi: 10.1007/s11571-011-9163-z.![]() ![]() |
[21] |
M. Shirkavand, M. Pourgholi and A. Yazdizadeh, Robust fixed-time synchronisation of non-identical nodes in complex networks under input non-linearities, IET Control Theory & Applications, 13 (2019), 2095-2103.
![]() |
[22] |
A. N. Langville and W. J. Stewart, The Kronecker product and stochastic automata networks, Journal of Computational and Applied Mathematics, 167 (2004), 429-447.
doi: 10.1016/j.cam.2003.10.010.![]() ![]() ![]() |
[23] |
P. Park, J. W. Ko and C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235-238.
doi: 10.1016/j.automatica.2010.10.014.![]() ![]() ![]() |
[24] |
J.-A. Wang, New synchronization stability criteria for general complex dynamical networks with interval time-varying delays, Neural Computing and Applications, 28 (2017), 805-815.
doi: 10.1007/s00521-015-2108-4.![]() ![]() |
[25] |
J. Y. Wang, J. W. Feng, C. Xu, Y. Zhao and J. Q. Feng, Pinning synchronization of nonlinearly coupled complex networks with time-varying delays using M-matrix strategies, Neurocomputing, 177 (2016), 89-97.
doi: 10.1016/j.neucom.2015.11.011.![]() ![]() |
[26] |
L. Wang and Q.-G. Wang, Synchronization in complex networks with switching topology, Physics Letters A, 375 (2011), 3070-3074.
doi: 10.1016/j.physleta.2011.06.054.![]() ![]() |
[27] |
M.-G. Wang, X.-Y. Wang and Z.-Z. Liu, A new complex network model with hierarchical and modular structures, Chinese Journal of Physics, 48 (2010), 805-813.
![]() |
[28] |
Y. Xu, W. Zhou, C. Xie and D. Tong, et al., Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling, Neurocomputing, 173 (2016), 1356-1361.
![]() |
[29] |
X. S. Yang and J. D. Cao, Finite-time stochastic synchronization of complex networks, Applied Mathematical Modelling, 34 (2010), 3631-3641.
doi: 10.1016/j.apm.2010.03.012.![]() ![]() ![]() |
[30] |
X. S. Yang, J. D. Cao and J. Q. Lu, Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Analysis: Real World Applications, 12 (2011), 2252-2266.
doi: 10.1016/j.nonrwa.2011.01.007.![]() ![]() ![]() |
[31] |
X. S. Yang, J. D. Cao and Z. C. Yang, Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller, SIAM Journal on Control and Optimization, 51 (2013), 3486-3510.
doi: 10.1137/120897341.![]() ![]() ![]() |
[32] |
J. F. Zeng and J. D. Cao, Synchronisation in singular hybrid complex networks with delayed coupling, International Journal of Systems, Control and Communications, 3 (2011), 144-157.
doi: 10.1504/IJSCC.2011.039865.![]() ![]() |
[33] |
J. Zhang and Y. B. Gao, Synchronization of coupled neural networks with time-varying delay, Neurocomputing, 219 (2017), 154-162.
doi: 10.1016/j.neucom.2016.09.004.![]() ![]() |
[34] |
Y.-J. Zhang, S. Liu, R. Yang, Y.-Y. Tan and X. Y. Li, Global synchronization of fractional coupled networks with discrete and distributed delays, Physica A: Statistical Mechanics and its Applications, 514 (2019), 830-837.
doi: 10.1016/j.physa.2018.09.129.![]() ![]() ![]() |
[35] |
J. Zhou, Q. J. Wu and L. Xiang, Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization, Nonlinear Dynamics, 69 (2012), 1393-1403.
doi: 10.1007/s11071-012-0355-9.![]() ![]() ![]() |