
-
Previous Article
A simple digital spiking neural network: Synchronization and spike-train approximation
- DCDS-S Home
- This Issue
-
Next Article
Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO
Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks
1. | Department of Mathematics, Thiruvalluvar University, Vellore-632115, Tamil Nadu, India |
2. | Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama 337-8570, Japan |
3. | Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia |
This investigation looks at the issue of finite time exponential synchronization of complex dynamical systems with reaaction diffusion term. This reort studies complex networks consisting of $ N $ straightly and diffusively coupled networks. By building a new Lyapunov krasovskii functional (LKF), using Jensens inequality and convex algorithms approach stability conditions frameworks are determined. At last, a numerical precedent is given to demonstrate the practicality of the theoretical results.
References:
[1] |
M. S. Ali, N. Gunasekaran and R. Saravanakumar,
Design of passivity and passification for delayed neural networks with markovian jump parameters via non-uniform sampled-data control, Neural Computing and Applications, 30 (2018), 595-605.
doi: 10.1007/s00521-016-2682-0. |
[2] |
M. S. Ali, N. Gunasekaran and Q. X. Zhu,
State estimation of T–S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control, Fuzzy Sets and Systems, 306 (2017), 87-104.
doi: 10.1016/j.fss.2016.03.012. |
[3] |
M. S. Ali, N. Gunasekaran and M. E. Rani,
Robust stability of Hopfield delayed neural networks via an augmented LK functional, Neurocomputing, 234 (2017), 198-204.
|
[4] |
M. Syed Ali, K. Meenakshi, N. Gunasekaran and M. Usha,
Finite-time passivity of discrete-time TS fuzzy neural networks with time-varying delays, Iranian Journal of Fuzzy Systems, 15 (2018), 93-107.
|
[5] |
M. Syed Ali, Q. X. Zhu, S. Pavithra and N. Gunasekaran,
A study on $(Q, S, R)-\gamma$-dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays, International Journal of Systems Science, 49 (2018), 755-765.
doi: 10.1080/00207721.2017.1422814. |
[6] |
P. Balasubramaniam and L. J. Banu,
Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties, Cognitive Neurodynamics, 8 (2014), 199-215.
doi: 10.1007/s11571-013-9272-y. |
[7] |
M. Fang,
Synchronization for complex dynamical networks with time delay and discrete-time information, Applied Mathematics and Computation, 258 (2015), 1-11.
doi: 10.1016/j.amc.2015.01.106. |
[8] |
D. W. Gong, H. G. Zhang, Z. S. Wang and J. H. Liu,
Synchronization analysis for complex networks with coupling delay based on T–S fuzzy theory, Applied Mathematical Modelling, 36 (2012), 6215-6224.
doi: 10.1016/j.apm.2012.01.041. |
[9] |
N. Gunasekaran, M. Syed Ali and S. Pavithra,
Finite-time $L_\infty$ performance state estimation of recurrent neural networks with sampled-data signals, Neural Processing Letters, 51 (2019), 1379-1392.
doi: 10.1007/s11063-019-10114-9. |
[10] |
W. He and J. Cao,
Exponential synchronization of hybrid coupled networks with delayed coupling, IEEE Transactions on Neural Networks, 21 (2010), 571-583.
|
[11] |
B. N. Huang, H. G. Zhang, D. W. Gong and J. Y. Wang,
Synchronization analysis for static neural networks with hybrid couplings and time delays, Neurocomputing, 148 (2015), 288-293.
doi: 10.1016/j.neucom.2013.11.053. |
[12] |
D. H. Ji, J. H. Park, W. J. Yoo, S. C. Won and S. M. Lee,
Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay, Physics Letters A, 374 (2010), 1218-1227.
doi: 10.1016/j.physleta.2010.01.005. |
[13] |
Y.-G. Kao, J.-F. Guo, C.-H. Wang and X.-Q. Sun,
Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen–Grossberg neural networks with mixed delays, Journal of the Franklin Institute, 349 (2012), 1972-1988.
doi: 10.1016/j.jfranklin.2012.04.005. |
[14] |
T. H. Lee, J. H. Park, H. Y. Jung, S. M. Lee and O. M. Kwon,
Synchronization of a delayed complex dynamical network with free coupling matrix, Nonlinear Dynamics, 69 (2012), 1081-1090.
doi: 10.1007/s11071-012-0328-z. |
[15] |
J. G. Lu,
Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with dirichlet boundary conditions, Chaos Solitons Fractals, 35 (2008), 116-125.
doi: 10.1016/j.chaos.2007.05.002. |
[16] |
N. N. Ma, Z. B. Liu and L. Chen,
Finite-time $H_\infty$ synchronization for complex dynamical networks with markovian jump parameter, Journal of Control, Automation and Electrical Systems, 30 (2019), 75-84.
doi: 10.1007/s40313-018-00428-9. |
[17] |
F. Z. Nian and X. Y. Wang,
Chaotic synchronization of hybrid state on complex networks, International Journal of Modern Physics C, 21 (2010), 457-469.
doi: 10.1142/S0129183110015221. |
[18] |
M.-J. Park, O. M. Kwon, J. H. Park, S.-M. Lee and E.-J. Cha,
Synchronization criteria of fuzzy complex dynamical networks with interval time-varying delays, Applied Mathematics and Computation, 218 (2012), 11634-11647.
doi: 10.1016/j.amc.2012.05.046. |
[19] |
L. Scheeffer,
Ueber die bedeutung der begriffe maximum und minimum iin der variationsrechnung, Mathematische Annalen, 26 (1886), 197-208.
doi: 10.1007/BF01444332. |
[20] |
J. Shen and J. Cao,
Finite-time synchronization of coupled neural networks via discontinuous controllers, Cognitive Neurodynamics, 5 (2011), 373-385.
doi: 10.1007/s11571-011-9163-z. |
[21] |
M. Shirkavand, M. Pourgholi and A. Yazdizadeh,
Robust fixed-time synchronisation of non-identical nodes in complex networks under input non-linearities, IET Control Theory & Applications, 13 (2019), 2095-2103.
|
[22] |
A. N. Langville and W. J. Stewart,
The Kronecker product and stochastic automata networks, Journal of Computational and Applied Mathematics, 167 (2004), 429-447.
doi: 10.1016/j.cam.2003.10.010. |
[23] |
P. Park, J. W. Ko and C. Jeong,
Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235-238.
doi: 10.1016/j.automatica.2010.10.014. |
[24] |
J.-A. Wang,
New synchronization stability criteria for general complex dynamical networks with interval time-varying delays, Neural Computing and Applications, 28 (2017), 805-815.
doi: 10.1007/s00521-015-2108-4. |
[25] |
J. Y. Wang, J. W. Feng, C. Xu, Y. Zhao and J. Q. Feng,
Pinning synchronization of nonlinearly coupled complex networks with time-varying delays using M-matrix strategies, Neurocomputing, 177 (2016), 89-97.
doi: 10.1016/j.neucom.2015.11.011. |
[26] |
L. Wang and Q.-G. Wang,
Synchronization in complex networks with switching topology, Physics Letters A, 375 (2011), 3070-3074.
doi: 10.1016/j.physleta.2011.06.054. |
[27] |
M.-G. Wang, X.-Y. Wang and Z.-Z. Liu,
A new complex network model with hierarchical and modular structures, Chinese Journal of Physics, 48 (2010), 805-813.
|
[28] |
Y. Xu, W. Zhou, C. Xie and D. Tong,
Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling, Neurocomputing, 173 (2016), 1356-1361.
|
[29] |
X. S. Yang and J. D. Cao,
Finite-time stochastic synchronization of complex networks, Applied Mathematical Modelling, 34 (2010), 3631-3641.
doi: 10.1016/j.apm.2010.03.012. |
[30] |
X. S. Yang, J. D. Cao and J. Q. Lu,
Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Analysis: Real World Applications, 12 (2011), 2252-2266.
doi: 10.1016/j.nonrwa.2011.01.007. |
[31] |
X. S. Yang, J. D. Cao and Z. C. Yang,
Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller, SIAM Journal on Control and Optimization, 51 (2013), 3486-3510.
doi: 10.1137/120897341. |
[32] |
J. F. Zeng and J. D. Cao,
Synchronisation in singular hybrid complex networks with delayed coupling, International Journal of Systems, Control and Communications, 3 (2011), 144-157.
doi: 10.1504/IJSCC.2011.039865. |
[33] |
J. Zhang and Y. B. Gao,
Synchronization of coupled neural networks with time-varying delay, Neurocomputing, 219 (2017), 154-162.
doi: 10.1016/j.neucom.2016.09.004. |
[34] |
Y.-J. Zhang, S. Liu, R. Yang, Y.-Y. Tan and X. Y. Li,
Global synchronization of fractional coupled networks with discrete and distributed delays, Physica A: Statistical Mechanics and its Applications, 514 (2019), 830-837.
doi: 10.1016/j.physa.2018.09.129. |
[35] |
J. Zhou, Q. J. Wu and L. Xiang,
Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization, Nonlinear Dynamics, 69 (2012), 1393-1403.
doi: 10.1007/s11071-012-0355-9. |
show all references
References:
[1] |
M. S. Ali, N. Gunasekaran and R. Saravanakumar,
Design of passivity and passification for delayed neural networks with markovian jump parameters via non-uniform sampled-data control, Neural Computing and Applications, 30 (2018), 595-605.
doi: 10.1007/s00521-016-2682-0. |
[2] |
M. S. Ali, N. Gunasekaran and Q. X. Zhu,
State estimation of T–S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control, Fuzzy Sets and Systems, 306 (2017), 87-104.
doi: 10.1016/j.fss.2016.03.012. |
[3] |
M. S. Ali, N. Gunasekaran and M. E. Rani,
Robust stability of Hopfield delayed neural networks via an augmented LK functional, Neurocomputing, 234 (2017), 198-204.
|
[4] |
M. Syed Ali, K. Meenakshi, N. Gunasekaran and M. Usha,
Finite-time passivity of discrete-time TS fuzzy neural networks with time-varying delays, Iranian Journal of Fuzzy Systems, 15 (2018), 93-107.
|
[5] |
M. Syed Ali, Q. X. Zhu, S. Pavithra and N. Gunasekaran,
A study on $(Q, S, R)-\gamma$-dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays, International Journal of Systems Science, 49 (2018), 755-765.
doi: 10.1080/00207721.2017.1422814. |
[6] |
P. Balasubramaniam and L. J. Banu,
Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties, Cognitive Neurodynamics, 8 (2014), 199-215.
doi: 10.1007/s11571-013-9272-y. |
[7] |
M. Fang,
Synchronization for complex dynamical networks with time delay and discrete-time information, Applied Mathematics and Computation, 258 (2015), 1-11.
doi: 10.1016/j.amc.2015.01.106. |
[8] |
D. W. Gong, H. G. Zhang, Z. S. Wang and J. H. Liu,
Synchronization analysis for complex networks with coupling delay based on T–S fuzzy theory, Applied Mathematical Modelling, 36 (2012), 6215-6224.
doi: 10.1016/j.apm.2012.01.041. |
[9] |
N. Gunasekaran, M. Syed Ali and S. Pavithra,
Finite-time $L_\infty$ performance state estimation of recurrent neural networks with sampled-data signals, Neural Processing Letters, 51 (2019), 1379-1392.
doi: 10.1007/s11063-019-10114-9. |
[10] |
W. He and J. Cao,
Exponential synchronization of hybrid coupled networks with delayed coupling, IEEE Transactions on Neural Networks, 21 (2010), 571-583.
|
[11] |
B. N. Huang, H. G. Zhang, D. W. Gong and J. Y. Wang,
Synchronization analysis for static neural networks with hybrid couplings and time delays, Neurocomputing, 148 (2015), 288-293.
doi: 10.1016/j.neucom.2013.11.053. |
[12] |
D. H. Ji, J. H. Park, W. J. Yoo, S. C. Won and S. M. Lee,
Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay, Physics Letters A, 374 (2010), 1218-1227.
doi: 10.1016/j.physleta.2010.01.005. |
[13] |
Y.-G. Kao, J.-F. Guo, C.-H. Wang and X.-Q. Sun,
Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion Cohen–Grossberg neural networks with mixed delays, Journal of the Franklin Institute, 349 (2012), 1972-1988.
doi: 10.1016/j.jfranklin.2012.04.005. |
[14] |
T. H. Lee, J. H. Park, H. Y. Jung, S. M. Lee and O. M. Kwon,
Synchronization of a delayed complex dynamical network with free coupling matrix, Nonlinear Dynamics, 69 (2012), 1081-1090.
doi: 10.1007/s11071-012-0328-z. |
[15] |
J. G. Lu,
Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with dirichlet boundary conditions, Chaos Solitons Fractals, 35 (2008), 116-125.
doi: 10.1016/j.chaos.2007.05.002. |
[16] |
N. N. Ma, Z. B. Liu and L. Chen,
Finite-time $H_\infty$ synchronization for complex dynamical networks with markovian jump parameter, Journal of Control, Automation and Electrical Systems, 30 (2019), 75-84.
doi: 10.1007/s40313-018-00428-9. |
[17] |
F. Z. Nian and X. Y. Wang,
Chaotic synchronization of hybrid state on complex networks, International Journal of Modern Physics C, 21 (2010), 457-469.
doi: 10.1142/S0129183110015221. |
[18] |
M.-J. Park, O. M. Kwon, J. H. Park, S.-M. Lee and E.-J. Cha,
Synchronization criteria of fuzzy complex dynamical networks with interval time-varying delays, Applied Mathematics and Computation, 218 (2012), 11634-11647.
doi: 10.1016/j.amc.2012.05.046. |
[19] |
L. Scheeffer,
Ueber die bedeutung der begriffe maximum und minimum iin der variationsrechnung, Mathematische Annalen, 26 (1886), 197-208.
doi: 10.1007/BF01444332. |
[20] |
J. Shen and J. Cao,
Finite-time synchronization of coupled neural networks via discontinuous controllers, Cognitive Neurodynamics, 5 (2011), 373-385.
doi: 10.1007/s11571-011-9163-z. |
[21] |
M. Shirkavand, M. Pourgholi and A. Yazdizadeh,
Robust fixed-time synchronisation of non-identical nodes in complex networks under input non-linearities, IET Control Theory & Applications, 13 (2019), 2095-2103.
|
[22] |
A. N. Langville and W. J. Stewart,
The Kronecker product and stochastic automata networks, Journal of Computational and Applied Mathematics, 167 (2004), 429-447.
doi: 10.1016/j.cam.2003.10.010. |
[23] |
P. Park, J. W. Ko and C. Jeong,
Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235-238.
doi: 10.1016/j.automatica.2010.10.014. |
[24] |
J.-A. Wang,
New synchronization stability criteria for general complex dynamical networks with interval time-varying delays, Neural Computing and Applications, 28 (2017), 805-815.
doi: 10.1007/s00521-015-2108-4. |
[25] |
J. Y. Wang, J. W. Feng, C. Xu, Y. Zhao and J. Q. Feng,
Pinning synchronization of nonlinearly coupled complex networks with time-varying delays using M-matrix strategies, Neurocomputing, 177 (2016), 89-97.
doi: 10.1016/j.neucom.2015.11.011. |
[26] |
L. Wang and Q.-G. Wang,
Synchronization in complex networks with switching topology, Physics Letters A, 375 (2011), 3070-3074.
doi: 10.1016/j.physleta.2011.06.054. |
[27] |
M.-G. Wang, X.-Y. Wang and Z.-Z. Liu,
A new complex network model with hierarchical and modular structures, Chinese Journal of Physics, 48 (2010), 805-813.
|
[28] |
Y. Xu, W. Zhou, C. Xie and D. Tong,
Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling, Neurocomputing, 173 (2016), 1356-1361.
|
[29] |
X. S. Yang and J. D. Cao,
Finite-time stochastic synchronization of complex networks, Applied Mathematical Modelling, 34 (2010), 3631-3641.
doi: 10.1016/j.apm.2010.03.012. |
[30] |
X. S. Yang, J. D. Cao and J. Q. Lu,
Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Analysis: Real World Applications, 12 (2011), 2252-2266.
doi: 10.1016/j.nonrwa.2011.01.007. |
[31] |
X. S. Yang, J. D. Cao and Z. C. Yang,
Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller, SIAM Journal on Control and Optimization, 51 (2013), 3486-3510.
doi: 10.1137/120897341. |
[32] |
J. F. Zeng and J. D. Cao,
Synchronisation in singular hybrid complex networks with delayed coupling, International Journal of Systems, Control and Communications, 3 (2011), 144-157.
doi: 10.1504/IJSCC.2011.039865. |
[33] |
J. Zhang and Y. B. Gao,
Synchronization of coupled neural networks with time-varying delay, Neurocomputing, 219 (2017), 154-162.
doi: 10.1016/j.neucom.2016.09.004. |
[34] |
Y.-J. Zhang, S. Liu, R. Yang, Y.-Y. Tan and X. Y. Li,
Global synchronization of fractional coupled networks with discrete and distributed delays, Physica A: Statistical Mechanics and its Applications, 514 (2019), 830-837.
doi: 10.1016/j.physa.2018.09.129. |
[35] |
J. Zhou, Q. J. Wu and L. Xiang,
Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization, Nonlinear Dynamics, 69 (2012), 1393-1403.
doi: 10.1007/s11071-012-0355-9. |

[1] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[2] |
Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469 |
[3] |
Michel Pierre, Didier Schmitt. Examples of finite time blow up in mass dissipative reaction-diffusion systems with superquadratic growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022039 |
[4] |
Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115 |
[5] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[6] |
Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69 |
[7] |
Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021 |
[8] |
B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077 |
[9] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure and Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283 |
[10] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[11] |
Arno Berger. On finite-time hyperbolicity. Communications on Pure and Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 |
[12] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[13] |
Juan Cao, Fengli Ren, Dacheng Zhou. Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022005 |
[14] |
Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102 |
[15] |
Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations and Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579 |
[16] |
Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823 |
[17] |
Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016 |
[18] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[19] |
Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304 |
[20] |
A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]