
-
Previous Article
Solutions to Chern-Simons-Schrödinger systems with external potential
- DCDS-S Home
- This Issue
-
Next Article
Numerical simulations of parity–time symmetric nonlinear Schrödinger equations in critical case
Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation
1. | Laboratoire de Biophysique, Département de Physique, Faculté des Sciences, Université de Yaoundé I, B.P. 812 Yaoundé, Cameroun |
2. | Botswana International University of Science and Technology, Private Bag 16 Palapye, Botswana |
3. | Département de Physique, Faculté des Sciences, Université de Maroua, B.P. 46 Maroua, Cameroun |
4. | Laboratoire de Mécanique, Département de Physique, Faculté des Sciences, Université de Yaoundé I, B.P. 812 Yaoundé, Cameroun |
The stochastic response of the FitzHugh-Nagumo model is addressed using a modified Van der Pol (VDP) equation with fractional-order derivative and Gaussian white noise excitation. Via the generalized harmonic balance method, the term related to fractional derivative is splitted into the equivalent quasi-linear dissipative force and quasi-linear restoring force, leading to an equivalent VDP equation without fractional derivative. The analytical solutions for the equivalent stochastic equation are then investigated through the stochastic averaging method. This is thereafter compared to numerical solutions, where the stationary probability density function (PDF) of amplitude and joint PDF of displacement and velocity are used to characterized the dynamical behaviors of the system. A satisfactory agreement is found between the two approaches, which confirms the accuracy of the used analytical method. It is also found that changing the fractional-order parameter and the intensity of the Gaussian white noise induces P-bifurcation.
References:
[1] |
R. R. Aliev and A. V. Panfilov,
A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, 7 (1996), 293-301.
doi: 10.1016/0960-0779(95)00089-5. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
C. D. K. Bansi, C. B. Tabi, G. T. Motsumi and A. Mohamadou,
Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects, J. Magn. Magn. Mater., 456 (2018), 38-45.
doi: 10.1016/j.jmmm.2018.01.079. |
[4] |
I. Bashkirtseva and L. Ryashko, Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique, Phys. Rev. E, 83 (2011), 061109.
doi: 10.1103/PhysRevE.83.061109. |
[5] |
M. Caputo,
Linear models of dissipation whose $Q$ is almost frequency independent-Ⅱ, Geophysical Journal International, 13 (1967), 529-539.
doi: 10.1111/j.1365-246X.1967.tb02303.x. |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73.
doi: 10.12785/pfda/010201. |
[7] |
A. Cheer, J.-P. Vincent, R. Nuccitelli and G. Oster,
Cortical activity in vertebrate eggs I: The activation waves, J. Theor. Biol., 124 (1987), 377-404.
doi: 10.1016/S0022-5193(87)80217-5. |
[8] |
L. Chen, W. Wang, Z. Li and W. Zhu,
Stationary response of Duffing oscillator with hardening stiffness and fractional derivative, Int. J. Non-Linear Mech., 48 (2013), 44-50.
doi: 10.1016/j.ijnonlinmec.2012.08.001. |
[9] |
L. Chen, Z. Li, Q. Zhuang and W. Zhu,
First-passage failure of single-degree-of-freedom nonlinear oscillators with fractional derivative, J. Vib. Control, 19 (2013), 2154-2163.
doi: 10.1177/1077546312456057. |
[10] |
J. J. Collins, C. C. Chow and T. T. Imhoff, Aperiodic stochastic resonance in excitable systems, Phys. Rev. E, 52 (1995), R3321(R).
doi: 10.1103/PhysRevE.52.R3321. |
[11] |
K. Diethelm, N. J. Ford and A. D. Freed,
A Predictor-Corrector approach for the numerical solution of fractional differential equations, Nonl. Dyn., 29 (2002), 3-22.
doi: 10.1023/A:1016592219341. |
[12] |
E. F. Doungmo Goufo,
Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries–Burgers equation, Math. Model. Anal., 21 (2016), 188-198.
doi: 10.3846/13926292.2016.1145607. |
[13] |
E. F. Doungmo Goufo and A. Atangana, Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion, Eur. Phys. J. Plus, 131 (2016), 269.
doi: 10.1140/epjp/i2016-16269-1. |
[14] |
E. F. Doungmo Goufo and C. B. Tabi, On the chaotic pole of attraction for Hindmarsh-Rose neuron dynamics with external current input, Chaos, 29 (2019), 023104, 9pp.
doi: 10.1063/1.5083180. |
[15] |
R. FitzHugh,
Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6. |
[16] |
R. FitzHugh,
Thresholds and plateaus in the Hodgkin-Huxley nerve equations, J. Gen. Physiol., 43 (1960), 867-896.
doi: 10.1085/jgp.43.5.867. |
[17] |
J. Guckenheimer and C. Kuehn,
Homoclinic orbits of the FitzHugh-Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), 138-153.
doi: 10.1137/090758404. |
[18] |
J. L. Hindmarsh and R. M. Rose,
A model of the nerve impulse using two first-order differential equations, Nature, 296 (1982), 162-164.
doi: 10.1038/296162a0. |
[19] |
J. L. Hindmarsh and R. M. Rose,
A model of neuronal bursting using three coupled first order differential equations, Proc. Royal. Soc. B, 221 (1984), 87-102.
doi: 10.1098/rspb.1984.0024. |
[20] |
A. L. Hodgkin and A. F. Huxley,
A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol., 117 (1952), 500-544.
doi: 10.1113/jphysiol.1952.sp004764. |
[21] |
Z. L. Huang and X. L. Jin,
Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative, J. Sound Vib., 319 (2009), 1121-1135.
doi: 10.1016/j.jsv.2008.06.026. |
[22] |
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Computational Neuroscience. MIT Press, Cambridge, MA, 2007. |
[23] | C. Koch, Biophysics of Computation: Information Processing in Single Neurons, Oxford University Press, 1999. Google Scholar |
[24] |
M. Kostur, X. Sailer and L. Schimansky-Geier, Stationary probability distributions for FitzHugh-Nagumo systems, Fluct. Noise Lett., 3 (2003), L155–L166.
doi: 10.1142/S0219477503001221. |
[25] |
B. Lindner, J. García-Ojalvo, A. Neiman and L. Schimansky-Geier,
Effects of noise in excitable systems, Phys. Rep., 392 (2004), 321-424.
doi: 10.1016/j.physrep.2003.10.015. |
[26] |
A. Longtin,
Stochastic resonance in neuron models, J. Stat. Phys., 70 (1993), 309-327.
doi: 10.1007/BF01053970. |
[27] |
J. Nagumo, S. Arimoto and S. Yoshizawa,
An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235. |
[28] |
X. Pei, K. Bachmann and F. Moss,
The detection threshold, noise and stochastic resonance in the Fitzhugh-Nagumo neuron model, Phys. Lett. A, 206 (1995), 61-65.
doi: 10.1016/0375-9601(95)00639-K. |
[29] |
I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press, San Diego, CA, 1999. |
[30] |
Z. Ran-Ran, X. Wei, Y. Gui-Dong and H. Qun, Response of a Duffing-Rayleigh system with a fractional derivative under Gaussian white noise excitation, Chin. Phys. B, 24 (2015), 020204.
doi: 10.1088/1674-1056/24/2/020204. |
[31] |
R. Scherer, S. L. Kalla, Y. Tang and J. Huang,
The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902-917.
doi: 10.1016/j.camwa.2011.03.054. |
[32] |
Y. Shen, P. Wei, C. Sui and S. Yang, Subharmonic resonance of Van-Der Pol oscillator with fractional-order derivative, Math. Probl. Eng., 2014 (2014), Art. ID 738087, 17 pp.
doi: 10.1155/2014/738087. |
[33] |
Y. Shen, P. Wei and S. Yang,
Primary resonance of fractional-order van der Pol oscillator, Nonlinear Dyn., 77 (2014), 1629-1642.
doi: 10.1007/s11071-014-1405-2. |
[34] |
Y. Shen, S. Yang and H. Xing, Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative, Acta Physica Sinica, 61 (2012), 110505-1-6.
doi: 10.7498/aps.61.110505. |
[35] |
Y. Shen, S. Yang, H. Xing and G. Gao,
Primary resonance of Duffing oscillator with fractional-order derivative, Commun. Nonl. Sci. Numer. Simul., 17 (2012), 3092-3100.
doi: 10.1016/j.cnsns.2011.11.024. |
[36] |
J. Sneyd and J. Sherratt,
On the propagation of calcium waves in an inhomogeneous medium, SIAM J. Appl. Math., 57 (1997), 73-94.
doi: 10.1137/S0036139995286035. |
[37] |
P. D. Spanos and B. A. Zeldin, Random vibration of systems with frequency-dependent parameters or fractional derivatives, J. Eng. Mech., 123 (1997), 290.
doi: 10.1061/(ASCE)0733-9399(1997)123:3(290). |
[38] |
C. B. Tabi,
Dynamical analysis of the FitzHugh–Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term, Int. J. Nonl. Mech., 105 (2018), 173-178.
doi: 10.1016/j.ijnonlinmec.2018.05.026. |
[39] |
C. B. Tabi,
Fractional unstable patterns of energy in $\alpha-$helix proteins with long-range interactions, Chaos Sol. Fract., 116 (2018), 386-391.
doi: 10.1016/j.chaos.2018.09.037. |
[40] |
D. Tatchim Bemmo, M. Siewe Siewe and C. Tchawoua,
Nonlinear oscillations of the FitzHugh-Nagumo equations under combined external and two-frequency parametric excitations, Phys. Lett. A, 375 (2011), 1944-1953.
doi: 10.1016/j.physleta.2011.02.072. |
[41] |
D. Tatchim Bemmo, M. Siewe Siewe and C. Tchawoua,
Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh-Nagumo neural model, Commun. Nonl. Sci. Numer. Simul., 18 (2013), 1275-1287.
doi: 10.1016/j.cnsns.2012.09.016. |
[42] |
H. Treutlein and K. Schulten,
Noise-induced limit cycles of the Bonhoeffer-Van der Pol model of neural pulses, Phys. Chem., 89 (1985), 710-718.
doi: 10.1002/bbpc.19850890626. |
[43] |
J. C. Tsai and J. Sneyd,
Traveling waves in the buffered FitzHugh-Nagumo model, SIAM J. Appl. Math., 71 (2011), 1606-1636.
doi: 10.1137/110820348. |
[44] |
K. Wiesenfeld, D. Pierson E. Pantazelou, C. Dames and F. Moss, Stochastic resonance on a circle, Phys. Rev. Lett., 72 (1994), 2125.
doi: 10.1103/PhysRevLett.72.2125. |
[45] |
Y. Yang, W. Xu, X. Gu and Y. Sun,
Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise, Chaos Solit. Frac., 77 (2015), 190-204.
doi: 10.1016/j.chaos.2015.05.029. |
[46] |
Y. Yang, W. Xu, W. Jia and Q. Han,
Stationary response of nonlinear system with Caputo-type fractional derivative damping under Gaussian white noise excitation, Nonl. Dyn., 79 (2015), 139-146.
doi: 10.1007/s11071-014-1651-3. |
show all references
References:
[1] |
R. R. Aliev and A. V. Panfilov,
A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, 7 (1996), 293-301.
doi: 10.1016/0960-0779(95)00089-5. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
C. D. K. Bansi, C. B. Tabi, G. T. Motsumi and A. Mohamadou,
Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects, J. Magn. Magn. Mater., 456 (2018), 38-45.
doi: 10.1016/j.jmmm.2018.01.079. |
[4] |
I. Bashkirtseva and L. Ryashko, Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique, Phys. Rev. E, 83 (2011), 061109.
doi: 10.1103/PhysRevE.83.061109. |
[5] |
M. Caputo,
Linear models of dissipation whose $Q$ is almost frequency independent-Ⅱ, Geophysical Journal International, 13 (1967), 529-539.
doi: 10.1111/j.1365-246X.1967.tb02303.x. |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73.
doi: 10.12785/pfda/010201. |
[7] |
A. Cheer, J.-P. Vincent, R. Nuccitelli and G. Oster,
Cortical activity in vertebrate eggs I: The activation waves, J. Theor. Biol., 124 (1987), 377-404.
doi: 10.1016/S0022-5193(87)80217-5. |
[8] |
L. Chen, W. Wang, Z. Li and W. Zhu,
Stationary response of Duffing oscillator with hardening stiffness and fractional derivative, Int. J. Non-Linear Mech., 48 (2013), 44-50.
doi: 10.1016/j.ijnonlinmec.2012.08.001. |
[9] |
L. Chen, Z. Li, Q. Zhuang and W. Zhu,
First-passage failure of single-degree-of-freedom nonlinear oscillators with fractional derivative, J. Vib. Control, 19 (2013), 2154-2163.
doi: 10.1177/1077546312456057. |
[10] |
J. J. Collins, C. C. Chow and T. T. Imhoff, Aperiodic stochastic resonance in excitable systems, Phys. Rev. E, 52 (1995), R3321(R).
doi: 10.1103/PhysRevE.52.R3321. |
[11] |
K. Diethelm, N. J. Ford and A. D. Freed,
A Predictor-Corrector approach for the numerical solution of fractional differential equations, Nonl. Dyn., 29 (2002), 3-22.
doi: 10.1023/A:1016592219341. |
[12] |
E. F. Doungmo Goufo,
Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries–Burgers equation, Math. Model. Anal., 21 (2016), 188-198.
doi: 10.3846/13926292.2016.1145607. |
[13] |
E. F. Doungmo Goufo and A. Atangana, Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion, Eur. Phys. J. Plus, 131 (2016), 269.
doi: 10.1140/epjp/i2016-16269-1. |
[14] |
E. F. Doungmo Goufo and C. B. Tabi, On the chaotic pole of attraction for Hindmarsh-Rose neuron dynamics with external current input, Chaos, 29 (2019), 023104, 9pp.
doi: 10.1063/1.5083180. |
[15] |
R. FitzHugh,
Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6. |
[16] |
R. FitzHugh,
Thresholds and plateaus in the Hodgkin-Huxley nerve equations, J. Gen. Physiol., 43 (1960), 867-896.
doi: 10.1085/jgp.43.5.867. |
[17] |
J. Guckenheimer and C. Kuehn,
Homoclinic orbits of the FitzHugh-Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), 138-153.
doi: 10.1137/090758404. |
[18] |
J. L. Hindmarsh and R. M. Rose,
A model of the nerve impulse using two first-order differential equations, Nature, 296 (1982), 162-164.
doi: 10.1038/296162a0. |
[19] |
J. L. Hindmarsh and R. M. Rose,
A model of neuronal bursting using three coupled first order differential equations, Proc. Royal. Soc. B, 221 (1984), 87-102.
doi: 10.1098/rspb.1984.0024. |
[20] |
A. L. Hodgkin and A. F. Huxley,
A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol., 117 (1952), 500-544.
doi: 10.1113/jphysiol.1952.sp004764. |
[21] |
Z. L. Huang and X. L. Jin,
Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative, J. Sound Vib., 319 (2009), 1121-1135.
doi: 10.1016/j.jsv.2008.06.026. |
[22] |
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Computational Neuroscience. MIT Press, Cambridge, MA, 2007. |
[23] | C. Koch, Biophysics of Computation: Information Processing in Single Neurons, Oxford University Press, 1999. Google Scholar |
[24] |
M. Kostur, X. Sailer and L. Schimansky-Geier, Stationary probability distributions for FitzHugh-Nagumo systems, Fluct. Noise Lett., 3 (2003), L155–L166.
doi: 10.1142/S0219477503001221. |
[25] |
B. Lindner, J. García-Ojalvo, A. Neiman and L. Schimansky-Geier,
Effects of noise in excitable systems, Phys. Rep., 392 (2004), 321-424.
doi: 10.1016/j.physrep.2003.10.015. |
[26] |
A. Longtin,
Stochastic resonance in neuron models, J. Stat. Phys., 70 (1993), 309-327.
doi: 10.1007/BF01053970. |
[27] |
J. Nagumo, S. Arimoto and S. Yoshizawa,
An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235. |
[28] |
X. Pei, K. Bachmann and F. Moss,
The detection threshold, noise and stochastic resonance in the Fitzhugh-Nagumo neuron model, Phys. Lett. A, 206 (1995), 61-65.
doi: 10.1016/0375-9601(95)00639-K. |
[29] |
I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press, San Diego, CA, 1999. |
[30] |
Z. Ran-Ran, X. Wei, Y. Gui-Dong and H. Qun, Response of a Duffing-Rayleigh system with a fractional derivative under Gaussian white noise excitation, Chin. Phys. B, 24 (2015), 020204.
doi: 10.1088/1674-1056/24/2/020204. |
[31] |
R. Scherer, S. L. Kalla, Y. Tang and J. Huang,
The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902-917.
doi: 10.1016/j.camwa.2011.03.054. |
[32] |
Y. Shen, P. Wei, C. Sui and S. Yang, Subharmonic resonance of Van-Der Pol oscillator with fractional-order derivative, Math. Probl. Eng., 2014 (2014), Art. ID 738087, 17 pp.
doi: 10.1155/2014/738087. |
[33] |
Y. Shen, P. Wei and S. Yang,
Primary resonance of fractional-order van der Pol oscillator, Nonlinear Dyn., 77 (2014), 1629-1642.
doi: 10.1007/s11071-014-1405-2. |
[34] |
Y. Shen, S. Yang and H. Xing, Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative, Acta Physica Sinica, 61 (2012), 110505-1-6.
doi: 10.7498/aps.61.110505. |
[35] |
Y. Shen, S. Yang, H. Xing and G. Gao,
Primary resonance of Duffing oscillator with fractional-order derivative, Commun. Nonl. Sci. Numer. Simul., 17 (2012), 3092-3100.
doi: 10.1016/j.cnsns.2011.11.024. |
[36] |
J. Sneyd and J. Sherratt,
On the propagation of calcium waves in an inhomogeneous medium, SIAM J. Appl. Math., 57 (1997), 73-94.
doi: 10.1137/S0036139995286035. |
[37] |
P. D. Spanos and B. A. Zeldin, Random vibration of systems with frequency-dependent parameters or fractional derivatives, J. Eng. Mech., 123 (1997), 290.
doi: 10.1061/(ASCE)0733-9399(1997)123:3(290). |
[38] |
C. B. Tabi,
Dynamical analysis of the FitzHugh–Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term, Int. J. Nonl. Mech., 105 (2018), 173-178.
doi: 10.1016/j.ijnonlinmec.2018.05.026. |
[39] |
C. B. Tabi,
Fractional unstable patterns of energy in $\alpha-$helix proteins with long-range interactions, Chaos Sol. Fract., 116 (2018), 386-391.
doi: 10.1016/j.chaos.2018.09.037. |
[40] |
D. Tatchim Bemmo, M. Siewe Siewe and C. Tchawoua,
Nonlinear oscillations of the FitzHugh-Nagumo equations under combined external and two-frequency parametric excitations, Phys. Lett. A, 375 (2011), 1944-1953.
doi: 10.1016/j.physleta.2011.02.072. |
[41] |
D. Tatchim Bemmo, M. Siewe Siewe and C. Tchawoua,
Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh-Nagumo neural model, Commun. Nonl. Sci. Numer. Simul., 18 (2013), 1275-1287.
doi: 10.1016/j.cnsns.2012.09.016. |
[42] |
H. Treutlein and K. Schulten,
Noise-induced limit cycles of the Bonhoeffer-Van der Pol model of neural pulses, Phys. Chem., 89 (1985), 710-718.
doi: 10.1002/bbpc.19850890626. |
[43] |
J. C. Tsai and J. Sneyd,
Traveling waves in the buffered FitzHugh-Nagumo model, SIAM J. Appl. Math., 71 (2011), 1606-1636.
doi: 10.1137/110820348. |
[44] |
K. Wiesenfeld, D. Pierson E. Pantazelou, C. Dames and F. Moss, Stochastic resonance on a circle, Phys. Rev. Lett., 72 (1994), 2125.
doi: 10.1103/PhysRevLett.72.2125. |
[45] |
Y. Yang, W. Xu, X. Gu and Y. Sun,
Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise, Chaos Solit. Frac., 77 (2015), 190-204.
doi: 10.1016/j.chaos.2015.05.029. |
[46] |
Y. Yang, W. Xu, W. Jia and Q. Han,
Stationary response of nonlinear system with Caputo-type fractional derivative damping under Gaussian white noise excitation, Nonl. Dyn., 79 (2015), 139-146.
doi: 10.1007/s11071-014-1651-3. |




[1] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[2] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[3] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[4] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[5] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[6] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[7] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[8] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[9] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[10] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[11] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[12] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[13] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[14] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[15] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[16] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[17] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[18] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[19] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[20] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]