doi: 10.3934/dcdss.2020398

Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model

1. 

Department of Mathematics, Faculty of Science, University of Zakho, Zakho, Iraq

2. 

Department of Mathematics and Science Education, Harran University, Sanliurfa, Turkey

3. 

Department of Mathematics, Faculty of Science, Firat University, Elazig, Turkey

* Corresponding author: Hajar Farhan Ismael

Received  July 2019 Revised  November 2019 Published  June 2020

In this paper, three images of nonlinearity to the fractional Lakshmanan Porsezian Daniel model in birefringent fibers are investigated. The new bright, periodic wave and singular optical soliton solutions are constructed via the $ \left( m+\frac{G'}{G} \right) $ expansion method, which are applicable to the dynamics within the optical fibers. All solutions are novel compared with solutions obtained via different methods. All solutions verify the conformable Lakshmanan-Porsezian-Daniel model and also, for the existence the constraint conditions are utilized. Moreover, 2D and 3D for all solutions are plotted to more understand its physical characteristics.

Citation: Hajar Farhan Ismael, Haci Mehmet Baskonus, Hasan Bulut. Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020398
References:
[1]

K. K. AliH. F. IsmaelB. A. Mahmood and M. A. Yousif, MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate, Int. J. Adv. Appl. Sci., 4 (2017), 55-58.  doi: 10.21833/ijaas.2017.01.008.  Google Scholar

[2]

K. K. Ali and A. Varol, Weissenberg and Williamson MHD flow over a stretching surface with thermal radiation and chemical reaction, JP J. Heat Mass Transf., 18 (2019), 57-71.  doi: 10.17654/HM018010057.  Google Scholar

[3]

K. K. Ali, R. Yilmazer, A. Yokus and H. Bulut, Analytical solutions for the $(3+1)$-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics, Physica A: Statistical Mechanics and its Applications, 548 (2020), 124327. doi: 10.1016/j.physa.2020.124327.  Google Scholar

[4]

R. T. AlqahtaniM. M. Babatin and A. Biswas, Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle, Optik, 154 (2018), 109-114.  doi: 10.1016/j.ijleo.2017.09.112.  Google Scholar

[5]

A. A. AlQarni et al., Optical solitons for Lakshmanan–Porsezian–Daniel model by Riccati equation approach, Optik, 182 (2019), 922-929.   Google Scholar

[6]

S. ArshedA. BiswasF. B. MajidQ. ZhouS. P. Moshokoa and M. Belic, Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using exp$\left(-\phi(\xi) \right)$-expansion method, Optik, 172 (2018), 651-656.   Google Scholar

[7]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2008), 21 pp. doi: 10.1051/mmnp/2018010.  Google Scholar

[8]

A. Atangana and A. Kılıçman, The use of Sumudu transform for solving certain nonlinear fractional heat-like equations, Abstr. Appl. Anal., 2013 (2013), Art. ID 737481, 12 pp. doi: 10.1155/2013/737481.  Google Scholar

[9]

H. M. Baskonus and H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 547-556.   Google Scholar

[10]

H. BaskonusT. MekkaouiZ. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771-5783.   Google Scholar

[11]

A. BiswasM. EkiciA. Sonmezoglu and R. T. Alqahtani, Optical solitons with differential group delay for coupled Fokas–Lenells equation by extended trial function scheme, Optik, 165 (2018), 102-110.  doi: 10.1016/j.ijleo.2018.03.102.  Google Scholar

[12]

A. BiswasM. EkiciA. Sonmezoglu and M. M. Babatin, Optical solitons with differential group delay and dual-dispersion for Lakshmanan–Porsezian–Daniel model by extended trial function method, Optik, 170 (2018), 512-519.  doi: 10.1016/j.ijleo.2018.06.012.  Google Scholar

[13]

A. Biswas et al, Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes, Optik, 158 (2018), 705-711.   Google Scholar

[14]

A. BiswasA. H. KaraR. T. AlqahtaniM. Z. UllahH. Triki and M. Belic, Conservation laws for optical solitons of Lakshmanan-Porsezian-Daniel model, Proc. Rom. Acad. Ser. A - Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 39-44.   Google Scholar

[15]

A. BiswasY. YldrmE. Yaar and R. T. Alqahtani, Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method, Optik, 168 (2018), 432-439.  doi: 10.1016/j.ijleo.2018.04.087.  Google Scholar

[16]

A. BiswasY. YildirimE. YasarQ. ZhouS. P. Moshokoa and M. Belic, Optical solitons for Lakshmanan-Porsezian–Daniel model by modified simple equation method, Optik, 160 (2018), 24-32.  doi: 10.1016/j.ijleo.2018.01.100.  Google Scholar

[17]

C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, Solitons in an inhomogeneous Murnaghans rod, Eur. Phys. J. Plus, 133 (2018), 228. Google Scholar

[18]

H. BulutT. A. Sulaiman and H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7.  doi: 10.1016/j.ijleo.2018.02.086.  Google Scholar

[19]

C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfeld-Sokolov systems, Opt. Quantum Electron, 50 (2018), 138. Google Scholar

[20]

L. D. MolelekiT. Motsepa and C. M. Khalique, Solutions and conservation laws of a generalized second extended $(3+1)$-dimensional Jimbo-Miwa equation, Appl. Math. Nonlinear Sci., 3 (2018), 459-474.  doi: 10.2478/AMNS.2018.2.00036.  Google Scholar

[21]

M. Dewasurendra and K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1-14.  doi: 10.21042/AMNS.2018.1.00001.  Google Scholar

[22]

M. Ekici, Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobis elliptic function expansion scheme, Optik, 172 (2018), 651-656.   Google Scholar

[23]

M. M. A. El-Sheikh, et al., Optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model by modified simple equation, Optik, 192 (2019), 162899. Google Scholar

[24]

E. İ. EskitąçıoğluM. B. Aktaş and H. M. Baskonus, New complex and hyperbolic forms for Ablowitz–Kaup–Newell–Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105-112.  doi: 10.2478/AMNS.2019.1.00010.  Google Scholar

[25]

E. Fan and J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383-392.  doi: 10.1016/S0375-9601(02)01516-5.  Google Scholar

[26]

W. Gao and H. F. Ismael, H. Bulut and H. M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 95 (2020), 035207. doi: 10.1088/1402-4896/ab4a50.  Google Scholar

[27]

W. Gao, H. F. Ismael, S. A. Mohammed, H. M. Baskonus and H. Bulut, Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with M-fractional, Front. Phys., 7 (2019), 197. Google Scholar

[28]

W. Gao, H. F. Ismael, A. M. Husien, H. Bulut and H. M. Baskonus, Optical soliton solutions of the Cubic-Quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law, Appl. Sci., 10 (2020), 219. doi: 10.3390/app10010219.  Google Scholar

[29]

Z. Hammouch and T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal| MESA, 5 (2014), 489-498.   Google Scholar

[30]

Z. Hammouch, T. Mekkaoui and P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative, Eur. Phys. J. Plus, 133 (2018), 248. doi: 10.1140/epjp/i2018-12096-8.  Google Scholar

[31]

M. B. Hubert and et al., Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method, Optik, 162 (2018), 228-236.   Google Scholar

[32]

O. A. IlhanA. EsenH. Bulut and H. M. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712-1715.  doi: 10.1016/j.rinp.2019.01.059.  Google Scholar

[33]

H. F. Ismael, Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation, Int. J. Adv. Appl. Sci., 4 (2017), 11-15.  doi: 10.21833/ijaas.2017.07.003.  Google Scholar

[34]

H. F. Ismael and K. K. Ali, MHD casson flow over an unsteady stretching sheet, Adv. Appl. Fluid Mech., 20 (2017), 533-541.  doi: 10.17654/FM020040533.  Google Scholar

[35]

H. F. Ismael and N. M. Arifin, Flow and heat transfer in a maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation, JP J. Heat Mass Transf., 15 (2018), 847-866.  doi: 10.17654/HM015040847.  Google Scholar

[36]

H. F. Ismael, H. Bulut and H. M. Baskonus, Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and $(m+ (G'/G))$-expansion method, Pramana, 94 (2020), 35. doi: 10.1007/s12043-019-1897-x.  Google Scholar

[37]

A. Javid and N. Raza, Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model, Optik, 171 (2018), 120-129.  doi: 10.1016/j.ijleo.2018.06.021.  Google Scholar

[38]

A. J. M. JawadM. J. Abu-AlShaeerA. BiswasQ. ZhouS. Moshokoa and M. Belic, Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms, Optik, 160 (2018), 197-202.  doi: 10.1016/j.ijleo.2018.01.121.  Google Scholar

[39]

C. M. Khalique and I. E. Mhlanga, Travelling waves and conservation laws of a $(2+1)$-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241-253.  doi: 10.21042/AMNS.2018.1.00018.  Google Scholar

[40]

C. M. Khalique and L. D. Moleleki, A $(3+ 1)$-dimensional generalized BKP-Boussinesq equation: Lie group approach, Results Phys., 13 (2019), 102239. doi: 10.1016/j.rinp.2019.102239.  Google Scholar

[41]

K. Khan and M. Ali Akbar, Traveling wave solutions of the $(2 + 1)$-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method, Ain Shams Eng. J., 5 (2014), 247-256.   Google Scholar

[42]

S. KoonprasertS. Sirisubtawee and S. Ampun, More explicit solitary solutions of the space-time fractional fifth order nonlinear Sawada-Kotera equation via the improved generalized Riccati equation mapping method, Comput. Math. with Appl., 13 (2017), 2629-2658.   Google Scholar

[43]

C.-K. Kuo and B. Ghanbari, Resonant multi-soliton solutions to new $(3+1)$-dimensional Jimbo–Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459-464.  doi: 10.1007/s11071-019-04799-9.  Google Scholar

[44]

W. LiuD.-Q. QiuZ.-W. Wu and J.-S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan - Porsezian - Daniel equation, Commun. Theor. Phys., 65 (2016), 671-676.  doi: 10.1088/0253-6102/65/6/671.  Google Scholar

[45]

J. Manafian and M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131 (2016), 97. doi: 10.1140/epjp/i2016-16097-3.  Google Scholar

[46]

J. Manafian, M. Foroutan and A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132 (2017), 494. doi: 10.1140/epjp/i2017-11762-7.  Google Scholar

[47]

J. ManafianM. Lakestani and A. Bekir, Study of the analytical treatment of the $(2+1)$-Dimensional Zoomeron, the duffing and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243-268.  doi: 10.1007/s40819-015-0058-2.  Google Scholar

[48]

Ö. Oruç, F. Bulut and A. Esen, Numerical solution of the KdV equation by Haar wavelet method, Pramana, 87 (2016), 94. Google Scholar

[49]

K. M. Owolabi and A. Atangana, On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, Chaos, 29 (2019), 023111, 12pp. doi: 10.1063/1.5085490.  Google Scholar

[50]

H. RezazadehM. MirzazadehS. M. Mirhosseini-AlizaminiA. NeiramehM. Eslami and Q. Zhou, Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities, Optik, 164 (2018), 414-423.  doi: 10.1016/j.ijleo.2018.03.039.  Google Scholar

[51]

A. R. Seadawy, D. Kumar and A. K. Chakrabarty, Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method, Eur. Phys. J. Plus, 133 (2018), 182. doi: 10.1140/epjp/i2018-12027-9.  Google Scholar

[52]

T. A. SulaimanH. BulutA. Yokus and H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647-656.  doi: 10.1007/s12648-018-1322-1.  Google Scholar

[53]

J. Vega-GuzmanA. BiswasM. F. MahmoodQ. ZhouS. P. Moshokoa and M. Belic, Optical solitons with polarization mode dispersion for Lakshmanan–Porsezian–Daniel model by the method of undetermined coefficients, Optik, 171 (2018), 114-119.  doi: 10.1016/j.ijleo.2018.06.040.  Google Scholar

[54]

J. Vega-Guzman et al., Optical solitons for Lakshmanan–Porsezian–Daniel model with spatio-temporal dispersion using the method of undetermined coefficients, Optik, 144 (2017), 115-123.   Google Scholar

[55]

X.-F. Yang, Z.-C. Deng and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Difference Equ., 2015 (2015), 117. doi: 10.1186/s13662-015-0452-4.  Google Scholar

[56]

X.-J. YangF. Gao and H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., 73 (2017), 203-210.  doi: 10.1016/j.camwa.2016.11.012.  Google Scholar

[57]

X.-J. YangH. M. Srivastava and C. Cattani, Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Reports Phys., 67 (2015), 752-761.   Google Scholar

[58]

Y. Yang, Z. Yan and B. A. Malomed, Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation, Chaos, 25 (2015), 103112, 9pp. doi: 10.1063/1.4931594.  Google Scholar

[59]

X. YangY. YangC. Cattani and M. Zhu, A new technique for solving the 1-D Burgers equation, Therm. Sci., 21 (2017), 129-136.  doi: 10.2298/TSCI17S1129Y.  Google Scholar

[60]

H. Yepez-Martínez and J. F. Gömez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan–Porsezian–Daniel equation with dual-dispersion for optical fibers, Optical and Quantum Electronics, 51 (2019), 31. Google Scholar

[61]

A. YokusH. M. BaskonusT. A. Sulaiman and H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionarysystem, Numer. Methods Partial Differ. Equ., 34 (2018), 211-227.  doi: 10.1002/num.22192.  Google Scholar

[62]

M. A. YousifB. A. MahmoodK. K. Ali and H. F. Ismael, Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet, Int. J. Pure Appl. Math., 107 (2016), 289-300.  doi: 10.12732/ijpam.v107i2.1.  Google Scholar

[63]

A. ZeeshanH. F. IsmaelM. A. YousifT. Mahmood and S. U. Rahman, Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium, J. Magn., 23 (2018), 491-498.  doi: 10.4283/JMAG.2018.23.4.491.  Google Scholar

[64]

Z. ZhengW. Zhao and H. Dai, A new definition of fractional derivative, Int. J. Non. Linear. Mech., 108 (2019), 1-6.  doi: 10.1016/j.ijnonlinmec.2018.10.001.  Google Scholar

show all references

References:
[1]

K. K. AliH. F. IsmaelB. A. Mahmood and M. A. Yousif, MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate, Int. J. Adv. Appl. Sci., 4 (2017), 55-58.  doi: 10.21833/ijaas.2017.01.008.  Google Scholar

[2]

K. K. Ali and A. Varol, Weissenberg and Williamson MHD flow over a stretching surface with thermal radiation and chemical reaction, JP J. Heat Mass Transf., 18 (2019), 57-71.  doi: 10.17654/HM018010057.  Google Scholar

[3]

K. K. Ali, R. Yilmazer, A. Yokus and H. Bulut, Analytical solutions for the $(3+1)$-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics, Physica A: Statistical Mechanics and its Applications, 548 (2020), 124327. doi: 10.1016/j.physa.2020.124327.  Google Scholar

[4]

R. T. AlqahtaniM. M. Babatin and A. Biswas, Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle, Optik, 154 (2018), 109-114.  doi: 10.1016/j.ijleo.2017.09.112.  Google Scholar

[5]

A. A. AlQarni et al., Optical solitons for Lakshmanan–Porsezian–Daniel model by Riccati equation approach, Optik, 182 (2019), 922-929.   Google Scholar

[6]

S. ArshedA. BiswasF. B. MajidQ. ZhouS. P. Moshokoa and M. Belic, Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using exp$\left(-\phi(\xi) \right)$-expansion method, Optik, 172 (2018), 651-656.   Google Scholar

[7]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2008), 21 pp. doi: 10.1051/mmnp/2018010.  Google Scholar

[8]

A. Atangana and A. Kılıçman, The use of Sumudu transform for solving certain nonlinear fractional heat-like equations, Abstr. Appl. Anal., 2013 (2013), Art. ID 737481, 12 pp. doi: 10.1155/2013/737481.  Google Scholar

[9]

H. M. Baskonus and H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 547-556.   Google Scholar

[10]

H. BaskonusT. MekkaouiZ. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771-5783.   Google Scholar

[11]

A. BiswasM. EkiciA. Sonmezoglu and R. T. Alqahtani, Optical solitons with differential group delay for coupled Fokas–Lenells equation by extended trial function scheme, Optik, 165 (2018), 102-110.  doi: 10.1016/j.ijleo.2018.03.102.  Google Scholar

[12]

A. BiswasM. EkiciA. Sonmezoglu and M. M. Babatin, Optical solitons with differential group delay and dual-dispersion for Lakshmanan–Porsezian–Daniel model by extended trial function method, Optik, 170 (2018), 512-519.  doi: 10.1016/j.ijleo.2018.06.012.  Google Scholar

[13]

A. Biswas et al, Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes, Optik, 158 (2018), 705-711.   Google Scholar

[14]

A. BiswasA. H. KaraR. T. AlqahtaniM. Z. UllahH. Triki and M. Belic, Conservation laws for optical solitons of Lakshmanan-Porsezian-Daniel model, Proc. Rom. Acad. Ser. A - Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 39-44.   Google Scholar

[15]

A. BiswasY. YldrmE. Yaar and R. T. Alqahtani, Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method, Optik, 168 (2018), 432-439.  doi: 10.1016/j.ijleo.2018.04.087.  Google Scholar

[16]

A. BiswasY. YildirimE. YasarQ. ZhouS. P. Moshokoa and M. Belic, Optical solitons for Lakshmanan-Porsezian–Daniel model by modified simple equation method, Optik, 160 (2018), 24-32.  doi: 10.1016/j.ijleo.2018.01.100.  Google Scholar

[17]

C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, Solitons in an inhomogeneous Murnaghans rod, Eur. Phys. J. Plus, 133 (2018), 228. Google Scholar

[18]

H. BulutT. A. Sulaiman and H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7.  doi: 10.1016/j.ijleo.2018.02.086.  Google Scholar

[19]

C. Cattani, T. A. Sulaiman, H. M. Baskonus and H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfeld-Sokolov systems, Opt. Quantum Electron, 50 (2018), 138. Google Scholar

[20]

L. D. MolelekiT. Motsepa and C. M. Khalique, Solutions and conservation laws of a generalized second extended $(3+1)$-dimensional Jimbo-Miwa equation, Appl. Math. Nonlinear Sci., 3 (2018), 459-474.  doi: 10.2478/AMNS.2018.2.00036.  Google Scholar

[21]

M. Dewasurendra and K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1-14.  doi: 10.21042/AMNS.2018.1.00001.  Google Scholar

[22]

M. Ekici, Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobis elliptic function expansion scheme, Optik, 172 (2018), 651-656.   Google Scholar

[23]

M. M. A. El-Sheikh, et al., Optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model by modified simple equation, Optik, 192 (2019), 162899. Google Scholar

[24]

E. İ. EskitąçıoğluM. B. Aktaş and H. M. Baskonus, New complex and hyperbolic forms for Ablowitz–Kaup–Newell–Segur wave equation with fourth order, Appl. Math. Nonlinear Sci., 4 (2019), 105-112.  doi: 10.2478/AMNS.2019.1.00010.  Google Scholar

[25]

E. Fan and J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383-392.  doi: 10.1016/S0375-9601(02)01516-5.  Google Scholar

[26]

W. Gao and H. F. Ismael, H. Bulut and H. M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 95 (2020), 035207. doi: 10.1088/1402-4896/ab4a50.  Google Scholar

[27]

W. Gao, H. F. Ismael, S. A. Mohammed, H. M. Baskonus and H. Bulut, Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with M-fractional, Front. Phys., 7 (2019), 197. Google Scholar

[28]

W. Gao, H. F. Ismael, A. M. Husien, H. Bulut and H. M. Baskonus, Optical soliton solutions of the Cubic-Quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law, Appl. Sci., 10 (2020), 219. doi: 10.3390/app10010219.  Google Scholar

[29]

Z. Hammouch and T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal| MESA, 5 (2014), 489-498.   Google Scholar

[30]

Z. Hammouch, T. Mekkaoui and P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative, Eur. Phys. J. Plus, 133 (2018), 248. doi: 10.1140/epjp/i2018-12096-8.  Google Scholar

[31]

M. B. Hubert and et al., Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method, Optik, 162 (2018), 228-236.   Google Scholar

[32]

O. A. IlhanA. EsenH. Bulut and H. M. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712-1715.  doi: 10.1016/j.rinp.2019.01.059.  Google Scholar

[33]

H. F. Ismael, Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation, Int. J. Adv. Appl. Sci., 4 (2017), 11-15.  doi: 10.21833/ijaas.2017.07.003.  Google Scholar

[34]

H. F. Ismael and K. K. Ali, MHD casson flow over an unsteady stretching sheet, Adv. Appl. Fluid Mech., 20 (2017), 533-541.  doi: 10.17654/FM020040533.  Google Scholar

[35]

H. F. Ismael and N. M. Arifin, Flow and heat transfer in a maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation, JP J. Heat Mass Transf., 15 (2018), 847-866.  doi: 10.17654/HM015040847.  Google Scholar

[36]

H. F. Ismael, H. Bulut and H. M. Baskonus, Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and $(m+ (G'/G))$-expansion method, Pramana, 94 (2020), 35. doi: 10.1007/s12043-019-1897-x.  Google Scholar

[37]

A. Javid and N. Raza, Singular and dark optical solitons to the well posed Lakshmanan–Porsezian–Daniel model, Optik, 171 (2018), 120-129.  doi: 10.1016/j.ijleo.2018.06.021.  Google Scholar

[38]

A. J. M. JawadM. J. Abu-AlShaeerA. BiswasQ. ZhouS. Moshokoa and M. Belic, Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms, Optik, 160 (2018), 197-202.  doi: 10.1016/j.ijleo.2018.01.121.  Google Scholar

[39]

C. M. Khalique and I. E. Mhlanga, Travelling waves and conservation laws of a $(2+1)$-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241-253.  doi: 10.21042/AMNS.2018.1.00018.  Google Scholar

[40]

C. M. Khalique and L. D. Moleleki, A $(3+ 1)$-dimensional generalized BKP-Boussinesq equation: Lie group approach, Results Phys., 13 (2019), 102239. doi: 10.1016/j.rinp.2019.102239.  Google Scholar

[41]

K. Khan and M. Ali Akbar, Traveling wave solutions of the $(2 + 1)$-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method, Ain Shams Eng. J., 5 (2014), 247-256.   Google Scholar

[42]

S. KoonprasertS. Sirisubtawee and S. Ampun, More explicit solitary solutions of the space-time fractional fifth order nonlinear Sawada-Kotera equation via the improved generalized Riccati equation mapping method, Comput. Math. with Appl., 13 (2017), 2629-2658.   Google Scholar

[43]

C.-K. Kuo and B. Ghanbari, Resonant multi-soliton solutions to new $(3+1)$-dimensional Jimbo–Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459-464.  doi: 10.1007/s11071-019-04799-9.  Google Scholar

[44]

W. LiuD.-Q. QiuZ.-W. Wu and J.-S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan - Porsezian - Daniel equation, Commun. Theor. Phys., 65 (2016), 671-676.  doi: 10.1088/0253-6102/65/6/671.  Google Scholar

[45]

J. Manafian and M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131 (2016), 97. doi: 10.1140/epjp/i2016-16097-3.  Google Scholar

[46]

J. Manafian, M. Foroutan and A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132 (2017), 494. doi: 10.1140/epjp/i2017-11762-7.  Google Scholar

[47]

J. ManafianM. Lakestani and A. Bekir, Study of the analytical treatment of the $(2+1)$-Dimensional Zoomeron, the duffing and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243-268.  doi: 10.1007/s40819-015-0058-2.  Google Scholar

[48]

Ö. Oruç, F. Bulut and A. Esen, Numerical solution of the KdV equation by Haar wavelet method, Pramana, 87 (2016), 94. Google Scholar

[49]

K. M. Owolabi and A. Atangana, On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, Chaos, 29 (2019), 023111, 12pp. doi: 10.1063/1.5085490.  Google Scholar

[50]

H. RezazadehM. MirzazadehS. M. Mirhosseini-AlizaminiA. NeiramehM. Eslami and Q. Zhou, Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities, Optik, 164 (2018), 414-423.  doi: 10.1016/j.ijleo.2018.03.039.  Google Scholar

[51]

A. R. Seadawy, D. Kumar and A. K. Chakrabarty, Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method, Eur. Phys. J. Plus, 133 (2018), 182. doi: 10.1140/epjp/i2018-12027-9.  Google Scholar

[52]

T. A. SulaimanH. BulutA. Yokus and H. M. Baskonus, On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93 (2019), 647-656.  doi: 10.1007/s12648-018-1322-1.  Google Scholar

[53]

J. Vega-GuzmanA. BiswasM. F. MahmoodQ. ZhouS. P. Moshokoa and M. Belic, Optical solitons with polarization mode dispersion for Lakshmanan–Porsezian–Daniel model by the method of undetermined coefficients, Optik, 171 (2018), 114-119.  doi: 10.1016/j.ijleo.2018.06.040.  Google Scholar

[54]

J. Vega-Guzman et al., Optical solitons for Lakshmanan–Porsezian–Daniel model with spatio-temporal dispersion using the method of undetermined coefficients, Optik, 144 (2017), 115-123.   Google Scholar

[55]

X.-F. Yang, Z.-C. Deng and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Difference Equ., 2015 (2015), 117. doi: 10.1186/s13662-015-0452-4.  Google Scholar

[56]

X.-J. YangF. Gao and H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., 73 (2017), 203-210.  doi: 10.1016/j.camwa.2016.11.012.  Google Scholar

[57]

X.-J. YangH. M. Srivastava and C. Cattani, Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Reports Phys., 67 (2015), 752-761.   Google Scholar

[58]

Y. Yang, Z. Yan and B. A. Malomed, Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation, Chaos, 25 (2015), 103112, 9pp. doi: 10.1063/1.4931594.  Google Scholar

[59]

X. YangY. YangC. Cattani and M. Zhu, A new technique for solving the 1-D Burgers equation, Therm. Sci., 21 (2017), 129-136.  doi: 10.2298/TSCI17S1129Y.  Google Scholar

[60]

H. Yepez-Martínez and J. F. Gömez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan–Porsezian–Daniel equation with dual-dispersion for optical fibers, Optical and Quantum Electronics, 51 (2019), 31. Google Scholar

[61]

A. YokusH. M. BaskonusT. A. Sulaiman and H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionarysystem, Numer. Methods Partial Differ. Equ., 34 (2018), 211-227.  doi: 10.1002/num.22192.  Google Scholar

[62]

M. A. YousifB. A. MahmoodK. K. Ali and H. F. Ismael, Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet, Int. J. Pure Appl. Math., 107 (2016), 289-300.  doi: 10.12732/ijpam.v107i2.1.  Google Scholar

[63]

A. ZeeshanH. F. IsmaelM. A. YousifT. Mahmood and S. U. Rahman, Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium, J. Magn., 23 (2018), 491-498.  doi: 10.4283/JMAG.2018.23.4.491.  Google Scholar

[64]

Z. ZhengW. Zhao and H. Dai, A new definition of fractional derivative, Int. J. Non. Linear. Mech., 108 (2019), 1-6.  doi: 10.1016/j.ijnonlinmec.2018.10.001.  Google Scholar

Figure 1.  3D graphic of Eq. (16) when $ \alpha = 0.9,{{A}_{1}} = 3,{{A}_{2}} = 2,a = 0.4,b = 0.1,\delta = 0.2,\nu = 0.2,\kappa = 0.1,\epsilon = 0.4,\beta = 0.9,\lambda = 1,m = 1,\mu = -1 $ and $ t = -2 $ for 2D
Figure 2.  3D figure of Eq. (17), when $ \alpha = 0.8,{{A}_{1}} = 3,{{A}_{2}} = 2,a = 0.4,b = 0.1,\delta = 0.2,\nu = -0.2,\kappa = 0.1,\epsilon = 0.4,\beta = 0.8,\lambda = -1,m = 1,\mu = 1 $ and $ t = 2 $ for 2D
Figure 3.  3D figure of Eq. (18) when $ \alpha = 0.5,{{A}_{1}} = -3,{{A}_{2}} = 0.2,a = 0.4,b = 0.1,\delta = 0.2,\nu = -0.2,\kappa = 0.5,\epsilon = 0.1,\beta = 0.5,\lambda = -2,m = 2,\mu = 1 $ and $ t = 2 $ for 2D
Figure 4.  3D graphic of Eq. (19) when $ \alpha = 0.5,{{A}_{1}} = -3,{{A}_{2}} = 1,a = 0.3,b = -2,\delta = 0.2,\nu = 0.2,\kappa = 0.1,\epsilon = 2,\beta = 0.5,\lambda = 1,m = 1,\mu = -1 $ and $ t = -2 $ for 2D
Figure 5.  3D figure of Eq. (20) when $ \alpha = 0.5,{{A}_{1}} = 3,{{A}_{2}} = 1,a = 0.3,b = 0.2,\delta = 0.2,\nu = -0.2,\kappa = 0.1,\epsilon = 2,\beta = 0.5,\lambda = -1,m = 1,\mu = 1 $ and $ t = 2 $ for 2D
Figure 6.  3D figure of Eq. (21) when $ \alpha = 0.5,{{A}_{1}} = 3,{{A}_{2}} = 1,a = 0.3,b = 0.2,\delta = 0.2,\nu = -0.2,\kappa = 0.1,\epsilon = 2,\beta = 0.5,\lambda = -2,m = 2,\mu = 1 $ and $ t = 2 $ for 2D
Figure 7.  3D figure of Eq. (26) when $ \alpha = 0.9,{{A}_{1}} = 1,{{A}_{2}} = 3,a = 0.3,b = 0.2,\delta = 0.2,\nu = 0.1,\kappa = 2,\epsilon = 0.2,{{a}_{1}} = 2,\beta = 0.9,\lambda = 1,m = 1,\mu = -1 $ and $ t = -2 $ for 2D
Figure 8.  3D figure of Eq. (27) when $ \alpha = 0.9,{{A}_{1}} = 1,{{A}_{2}} = 3,a = 0.3,b = 0.2,\delta = 0.2,\nu = -0.1,\kappa = 2,\epsilon = 0.2,{{a}_{1}} = -2,\beta = 0.9,\lambda = -1,m = 1,\mu = 1 $ and $ t = 2 $ for 2D
Figure 9.  3D figure of Eq. (28) when $ \alpha = 0.5,{{A}_{1}} = 3,{{A}_{2}} = 2,a = 2,b = 0.1,\delta = 0.2,\nu = 0.2,\kappa = 1,\epsilon = 0.2,{{a}_{1}} = 2,\beta = 0.5,\lambda = -2,m = 2,\mu = 1 $ and $ t = 2 $ for 2D
Figure 10.  3D figure of Eq. (29) when $ \alpha = 0.5,{{A}_{1}} = 2,{{A}_{2}} = 3,a = 0.2,b = 0.2,\delta = 0.2,\nu = -0.2,\kappa = 1,\epsilon = 2,{{c}_{1}} = 1,\beta = 0.5,\gamma = -1,\lambda = 1,m = 1,\mu = -1 $ and $ t = 2 $ for 2D
Figure 11.  3D figure of Eq. (30) when $ \alpha = 0.9,{{A}_{1}} = 2,{{A}_{2}} = 3,a = 3,b = -2,\delta = 0.2,\nu = 0.1,\kappa = 2,\epsilon = 0.2,{{c}_{1}} = 1,\beta = 0.9,\gamma = 1,\lambda = -1,m = 1,\mu = 1 $ and $ t = 2 $ for 2D
Figure 12.  3D figure of Eq. (31) when $ \alpha = 0.9,{{A}_{1}} = -3,{{A}_{2}} = 2,a = 2,b = 0.1,\delta = 0.2,\nu = 0.2,\kappa = 1,\epsilon = 0.2,{{c}_{1}} = 1,\beta = 0.9,\gamma = -2,\lambda = -2,m = 2,\mu = 1 $ and $ t = 2 $ for 2D
Figure 13.  3D figure of Eq. (36) when $ \alpha = 1/2,{{A}_{1}} = 0.2,{{A}_{2}} = 0.3,a = -0.2,b = 1,\delta = -0.2,\nu = 0.2,\kappa = 0.1,\epsilon = 0.2,{{c}_{1}} = 2,\gamma = 0.1,{{a}_{0}} = 0.1,{{c}_{3}} = 0.1,\beta = 1/2,\lambda = 1,m = 1,\mu = -1 $ and $ t = -2 $ for 2D
Figure 14.  3D figure of Eq. (37) when $ \alpha = 0.5,{{A}_{1}} = 1,{{A}_{2}} = 3,a = -0.2,b = 2,\delta = -0.2,\nu = 0.2,\kappa = 1,\epsilon = 2,{{c}_{1}} = 1,\gamma = 1,{{a}_{0}} = 5,{{c}_{3}} = 1,\beta = 0.5,\lambda = -1,m = 1,\mu = 1 $ and $ t = -2 $ for 2D
Figure 15.  3D figure of Eq. (38) when $ \alpha = 0.5,{{A}_{1}} = 2,{{A}_{2}} = 0.3,a = -0.2,b = 2,\delta = -0.2,\nu = 0.2,\kappa = 1,\epsilon = 2,{{c}_{1}} = 1,\gamma = 1,{{a}_{0}} = 1,{{c}_{3}} = 0.1,\beta = 0.5,\lambda = -2,m = 2,\mu = 1 $ and $ t = 2 $ for 2D
Figure 16.  3D figure of Eq. (39) when $ \alpha = 0.5,{{A}_{1}} = 0.2,{{A}_{2}} = 0.3,b = -0.2,\delta = 0.2,\nu = 0.2,\kappa = 1,\epsilon = 2,{{c}_{1}} = 0.2,\gamma = 1,{{c}_{3}} = 1,\beta = 0.5,{{a}_{1}} = 1,\omega = 1,a = 0.2,\lambda = 1,m = 1,\mu = -1 $ and $ t = -2 $ for 2D
Figure 17.  3D figure of Eq. (40) when $ \alpha = 0.9,{{A}_{1}} = 0.4,{{A}_{2}} = 2,b = -0.2,\delta = 0.2,\nu = 0.2,\kappa = 1,\epsilon = 2,{{c}_{1}} = 1,\gamma = 1,{{c}_{3}} = 1,\beta = 0.9,{{a}_{1}} = 0.1,\omega = 1,a = 0.2,\lambda = -1,m = 1,\mu = 1 $ and $ t = 2 $ for 2D
Figure 18.  3D figure of Eq. (41) when $ \alpha = 0.9,{{A}_{1}} = 0.4,{{A}_{2}} = 2,b = -0.2,\delta = 0.2,\nu = 0.2,\kappa = 1,\epsilon = 2,{{c}_{1}} = 1,\gamma = 1,{{c}_{3}} = 1,\beta = 0.9,{{a}_{1}} = 0.1,\omega = 1,a = 0.2,\lambda = -2,m = 2,\mu = 1 $ and $ t = 2 $ for 2D
[1]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[2]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[3]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[4]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[5]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[6]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[7]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[10]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[11]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[12]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[13]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[14]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[15]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]