March  2020, 13(3): i-ii. doi: 10.3934/dcdss.20203i

Preface on "New trends of numerical and analytical methods"

1. 

Institute for Groundwater Studies, University of the Free State, Bloemfontein, 9300, South Africa

2. 

CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México

3. 

Department of Chemical Engineering, University of Chemical Technology and Metallurgy, Sofia, Sofia 1756, 8 Kliment Ohridsky, blvd, Bulgaria

4. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences University of the Free State, Bloemfontein 9300, South Africa

5. 

Department of Mathematical Sciences Federal University of Technology, PMB 704, Akure Ondo State, Nigeria

Published  March 2020

Citation: Abdon Atangana, José Francisco Gómez-Aguilar, Jordan Y. Hristov, Kolade M. Owolabi. Preface on "New trends of numerical and analytical methods". Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : i-ii. doi: 10.3934/dcdss.20203i
[1]

Abdon Atangana, Zakia Hammouch, Kolade M. Owolabi, Gisele Mephou. Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : i-i. doi: 10.3934/dcdss.201903i

[2]

Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics and Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025

[3]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks and Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[4]

Asif Yokus, Mehmet Yavuz. Novel comparison of numerical and analytical methods for fractional Burger–Fisher equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2591-2606. doi: 10.3934/dcdss.2020258

[5]

Tomás Caraballo, Juan L. G. Guirao. New trends on nonlinear dynamics and its applications. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : i-ii. doi: 10.3934/dcdss.2015.8.6i

[6]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[7]

Fathalla A. Rihan, Yang Kuang, Gennady Bocharov. From the guest editors: "Delay Differential Equations: Theory, Applications and New Trends". Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : i-iv. doi: 10.3934/dcdss.2020404

[8]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[9]

Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008

[10]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[11]

Wansheng Wang, Chengjian Zhang. Analytical and numerical dissipativity for nonlinear generalized pantograph equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1245-1260. doi: 10.3934/dcds.2011.29.1245

[12]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[13]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[14]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[15]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[16]

Bernd Krauskopf, Hinke M. Osinga. Preface: Special issue on continuation methods and applications. Journal of Computational Dynamics, 2022, 9 (3) : i-ii. doi: 10.3934/jcd.2022015

[17]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[18]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[19]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[20]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (306)
  • HTML views (358)
  • Cited by (0)

[Back to Top]