March  2020, 13(3): i-ii. doi: 10.3934/dcdss.20203i

Preface on "New trends of numerical and analytical methods"

1. 

Institute for Groundwater Studies, University of the Free State, Bloemfontein, 9300, South Africa

2. 

CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México

3. 

Department of Chemical Engineering, University of Chemical Technology and Metallurgy, Sofia, Sofia 1756, 8 Kliment Ohridsky, blvd, Bulgaria

4. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences University of the Free State, Bloemfontein 9300, South Africa

5. 

Department of Mathematical Sciences Federal University of Technology, PMB 704, Akure Ondo State, Nigeria

Published  March 2020

Citation: Abdon Atangana, José Francisco Gómez-Aguilar, Jordan Y. Hristov, Kolade M. Owolabi. Preface on "New trends of numerical and analytical methods". Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : i-ii. doi: 10.3934/dcdss.20203i
[1]

Abdon Atangana, Zakia Hammouch, Kolade M. Owolabi, Gisele Mephou. Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : i-i. doi: 10.3934/dcdss.201903i

[2]

Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics & Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025

[3]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[4]

Asif Yokus, Mehmet Yavuz. Novel comparison of numerical and analytical methods for fractional Burger–Fisher equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2591-2606. doi: 10.3934/dcdss.2020258

[5]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[6]

Tomás Caraballo, Juan L. G. Guirao. New trends on nonlinear dynamics and its applications. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : i-ii. doi: 10.3934/dcdss.2015.8.6i

[7]

Fathalla A. Rihan, Yang Kuang, Gennady Bocharov. From the guest editors: "Delay Differential Equations: Theory, Applications and New Trends". Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : i-iv. doi: 10.3934/dcdss.2020404

[8]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[9]

Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008

[10]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[11]

Wansheng Wang, Chengjian Zhang. Analytical and numerical dissipativity for nonlinear generalized pantograph equations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1245-1260. doi: 10.3934/dcds.2011.29.1245

[12]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[13]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[14]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[15]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[16]

Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial & Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299

[17]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[18]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[19]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[20]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks & Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (283)
  • HTML views (287)
  • Cited by (0)

[Back to Top]