• Previous Article
    Darcy-Forchheimer relation in Magnetohydrodynamic Jeffrey nanofluid flow over stretching surface
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme
doi: 10.3934/dcdss.2020400

Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method

1. 

MAE2D laboratory, University Abdelmalek Essaadi, Polydisciplinary Faculty of Larache, Road of Rabat, Larache, Morocco

2. 

National Meteorological Direction of Morocco, Airport Casa-Anfa, Casa Oasis - Casablanca, Morocco

* Corresponding author: tayeq.hatim@gmail.com (Hatim Tayeq)

Received  July 2019 Revised  October 2019 Published  June 2020

Fund Project: This work was partially supported by the project PICS Mairoc with a corporation with the Jean Leray Laboratory of Nantes university (France) and the National Meteorological Direction (DMN) of Morocco

In this work, we present a self-adaptive algorithm based on the techniques of the a posteriori estimates for the transport equation modeling the dispersion of pollutants in the atmospheric boundary layer at the local scale (industrial accident, urban air quality). The goal is to provide a powerful model for forecasting pollutants concentrations with better manipulation of available computing resources.

This analysis is based on a vertex-centered Finite Volume Method in space and an implicit Euler scheme in time. We apply and validate our model, using a self-adaptive algorithm, with real atmospheric data of the Grand Casablanca area (Morocco).

Citation: Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020400
References:
[1]

M. AfifA. BergamZ. Mghazli and R. Verfurth, A posteriori estimators of the finite volume discretization of an elliptic problem, Numer. Algorithms, 34 (2003), 127-136.  doi: 10.1023/B:NUMA.0000005400.45852.f3.  Google Scholar

[2]

B. AmazianeA. BergamM. El Ossmani and Z. Mghazli, A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Internat. J. Numer. Methods Fluids, 59 (2009), 259-284.  doi: 10.1002/fld.1456.  Google Scholar

[3]

A. BergamC. BernardiF. Hecht and Z. Mghazli, Error indicators for the mortar finite element discretization of a parabolic problem, Numer. Algorithms, 34 (2003), 187-201.  doi: 10.1023/B:NUMA.0000005362.95126.4c.  Google Scholar

[4]

A. BergamZ. Mghazli and R. Verfürth, Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire, Numer. Math., 95 (2003), 599-624.  doi: 10.1007/s00211-003-0460-2.  Google Scholar

[5]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[6]

W. Gong and H.-R. Cho, A numerical scheme for the integration of the gas-phase chemical rate equations in 3d atmospheric models, Atmospheric Environment, 27 (1993), 2147-2160.  doi: 10.1016/0960-1686(93)90044-Y.  Google Scholar

[7]

J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17 (1979), 187-202.  doi: 10.1007/BF00117978.  Google Scholar

[8]

V. MalletA. PourchetD. Quélo and B. Sportisse, Investigation of some numerical issues in a chemistry-transport model: Gas-phase simulations, J. Geophysical Research, 112 (2007), 301-317.  doi: 10.1029/2006JD008373.  Google Scholar

[9]

V. Mallet and B. Sportisse, 3-D chemistry-transport model Polair: Numerical issues, validation and automatic-differentiation strategy, Atmos. Chem. Phys. Discuss., 4 (2004), 1371-1392.  doi: 10.5194/acpd-4-1371-2004.  Google Scholar

[10]

V. Mallet and B. Sportisse, Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111 (2006), 1-15.  doi: 10.1029/2005JD006149.  Google Scholar

[11]

W. R. Stockwell, F. Kirchner, M. Kuhn and S. Seefeld, A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102 (1997). doi: 10.1029/97JD00849.  Google Scholar

[12]

W. R. StockwellP. MiddletonJ. S. Chang and X. Tang, The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95 (1990), 343-367.  doi: 10.1029/JD095iD10p16343.  Google Scholar

[13]

R. B. Stull, An Introduction to Boundary Layer Meteorology, Atmospheric Sciences Library, 13, Springer, Dordrecht, 1998. doi: 10.1007/978-94-009-3027-8.  Google Scholar

[14]

World Helth Organization, Ambient Air Pollution: Pollutants, WHO Report, WHO Library Cataloguing-in-Publication Data, 2018. Available from: http://www.who.int/airpollution/ambient/pollutants/en/. Google Scholar

[15]

L. WuV. MalletM. Bocquet and B. Sportisse, A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res., 113 (2008), 1-17.  doi: 10.1029/2008JD009991.  Google Scholar

show all references

References:
[1]

M. AfifA. BergamZ. Mghazli and R. Verfurth, A posteriori estimators of the finite volume discretization of an elliptic problem, Numer. Algorithms, 34 (2003), 127-136.  doi: 10.1023/B:NUMA.0000005400.45852.f3.  Google Scholar

[2]

B. AmazianeA. BergamM. El Ossmani and Z. Mghazli, A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Internat. J. Numer. Methods Fluids, 59 (2009), 259-284.  doi: 10.1002/fld.1456.  Google Scholar

[3]

A. BergamC. BernardiF. Hecht and Z. Mghazli, Error indicators for the mortar finite element discretization of a parabolic problem, Numer. Algorithms, 34 (2003), 187-201.  doi: 10.1023/B:NUMA.0000005362.95126.4c.  Google Scholar

[4]

A. BergamZ. Mghazli and R. Verfürth, Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire, Numer. Math., 95 (2003), 599-624.  doi: 10.1007/s00211-003-0460-2.  Google Scholar

[5]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[6]

W. Gong and H.-R. Cho, A numerical scheme for the integration of the gas-phase chemical rate equations in 3d atmospheric models, Atmospheric Environment, 27 (1993), 2147-2160.  doi: 10.1016/0960-1686(93)90044-Y.  Google Scholar

[7]

J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17 (1979), 187-202.  doi: 10.1007/BF00117978.  Google Scholar

[8]

V. MalletA. PourchetD. Quélo and B. Sportisse, Investigation of some numerical issues in a chemistry-transport model: Gas-phase simulations, J. Geophysical Research, 112 (2007), 301-317.  doi: 10.1029/2006JD008373.  Google Scholar

[9]

V. Mallet and B. Sportisse, 3-D chemistry-transport model Polair: Numerical issues, validation and automatic-differentiation strategy, Atmos. Chem. Phys. Discuss., 4 (2004), 1371-1392.  doi: 10.5194/acpd-4-1371-2004.  Google Scholar

[10]

V. Mallet and B. Sportisse, Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111 (2006), 1-15.  doi: 10.1029/2005JD006149.  Google Scholar

[11]

W. R. Stockwell, F. Kirchner, M. Kuhn and S. Seefeld, A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102 (1997). doi: 10.1029/97JD00849.  Google Scholar

[12]

W. R. StockwellP. MiddletonJ. S. Chang and X. Tang, The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95 (1990), 343-367.  doi: 10.1029/JD095iD10p16343.  Google Scholar

[13]

R. B. Stull, An Introduction to Boundary Layer Meteorology, Atmospheric Sciences Library, 13, Springer, Dordrecht, 1998. doi: 10.1007/978-94-009-3027-8.  Google Scholar

[14]

World Helth Organization, Ambient Air Pollution: Pollutants, WHO Report, WHO Library Cataloguing-in-Publication Data, 2018. Available from: http://www.who.int/airpollution/ambient/pollutants/en/. Google Scholar

[15]

L. WuV. MalletM. Bocquet and B. Sportisse, A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res., 113 (2008), 1-17.  doi: 10.1029/2008JD009991.  Google Scholar

Figure 1.  Vertex-centred cell in 2D
Figure 2.  The measurement stations on the Grand Casablanca area
Figure 3.  Numerical simulations obtained using a uniform mesh with 443 elements at two times $ t = 50 $, (A), and $ t = 1400 $, (B)
Figure 4.  Numerical simulations obtained using a uniform mesh with 22887 elements at two times $ t = 50 $, (A), and $ t = 1400 $, (B)
Figure 5.  (A) and (B) are the approximate solution using a adaptive mesh at $ t = 50 $ and $ t = 1400 $ respectively in level 2
Figure 6.  (A), (B) and (C) are the adaptively refined meshes at $ t = 50 $ in level 1, 2 and 3 respectively
Figure 7.  (A), (B) and (C) are the adaptively refined meshes at $ t = 1400 $ in level 1, 2 and 3 respectively
Figure 8.  Forecasted concentration of ozone before and after the implementation of our algorithm in two positions: Jahid station, (A) and Khansae station, (B)
Table 1.  The calculated parameters for the numerical model
Parameter Signification Value
$ D $ Diffusion coefficient $ 95.3\ m^2.s^{-1} $
$ V $ Velocity vector $ [3.9\ m.s^{-1}, 1.58\ m.s^{-1}] $
$ r $ Reaction balance $ 3.9 $
$ f $ Second member $ 2.95\ \mu g.m^{-3} $
$ c_0 $ Initial concentration $ 64\ \mu g.m^{-3} $
Parameter Signification Value
$ D $ Diffusion coefficient $ 95.3\ m^2.s^{-1} $
$ V $ Velocity vector $ [3.9\ m.s^{-1}, 1.58\ m.s^{-1}] $
$ r $ Reaction balance $ 3.9 $
$ f $ Second member $ 2.95\ \mu g.m^{-3} $
$ c_0 $ Initial concentration $ 64\ \mu g.m^{-3} $
Table 2.  The self-adaptive algorithm at an iteration
Step 1: Mesh generating and data input.
Step 2: Solve the discrete problem.
Step 3: Calculate the local error indicators.
Step 4: Mark mesh cells and adapt mesh.
Step 5: Solve the discrete problem in the new adapted mesh.
Step 6: if the stopping test is satisfied, go to the step 7
else, go to the step 3.
Step 7: Interpolate solution and visualization.
Step 1: Mesh generating and data input.
Step 2: Solve the discrete problem.
Step 3: Calculate the local error indicators.
Step 4: Mark mesh cells and adapt mesh.
Step 5: Solve the discrete problem in the new adapted mesh.
Step 6: if the stopping test is satisfied, go to the step 7
else, go to the step 3.
Step 7: Interpolate solution and visualization.
Table 3.  The results obtained before and after the application of the self-adaptive algorithm of the mesh at $ t = 50 $
Level Number of jump residual CPU
elements indicator indicator time
primal mesh $ 443 $ $ 5.0132e-03 $ $ 1.6088e-04 $ $ 1.4053\ s $
$ t=50 $ $ 1 $ $ 196 $ $ 9.8885e-05 $ $ 9.4178e-04 $ $ 6.0905\ s $
$ 2 $ $ 278 $ $ 3.1335e-05 $ $ 2.6348e-04 $ $ 7.2734\ s $
$ 3 $ $ 629 $ $ 7.8928e-06 $ $ 3.1045e-06 $ $ 8.2617\ s $
uniform mesh $ 22887 $ $ 1.3548e-07 $ $ 1.9964e-06 $ $ 53.4408\ s $
Level Number of jump residual CPU
elements indicator indicator time
primal mesh $ 443 $ $ 5.0132e-03 $ $ 1.6088e-04 $ $ 1.4053\ s $
$ t=50 $ $ 1 $ $ 196 $ $ 9.8885e-05 $ $ 9.4178e-04 $ $ 6.0905\ s $
$ 2 $ $ 278 $ $ 3.1335e-05 $ $ 2.6348e-04 $ $ 7.2734\ s $
$ 3 $ $ 629 $ $ 7.8928e-06 $ $ 3.1045e-06 $ $ 8.2617\ s $
uniform mesh $ 22887 $ $ 1.3548e-07 $ $ 1.9964e-06 $ $ 53.4408\ s $
Table 4.  The results obtained before and after the application of the self-adaptive algorithm of the mesh at $ t = 1400 $
Level Number of Jump Residual CPU
elements indicator indicator time
Primal mesh $ 443 $ $ 1.6483e-05 $ $ 1.9601e-05 $ $ 1.4053\ s $
Adaptive mesh $ 1 $ $ 828 $ $ 1.3212e-07 $ $ 1.9516e-06 $ $ 18.1240\ s $
$ 2 $ $ 1374 $ $ 7.2050e-08 $ $ 1.5499e-07 $ $ 25.0560\ s $
uniform mesh $ 22887 $ $ 1.1405e-08 $ $ 1.2477e-07 $ $ 95.6868\ s $
Level Number of Jump Residual CPU
elements indicator indicator time
Primal mesh $ 443 $ $ 1.6483e-05 $ $ 1.9601e-05 $ $ 1.4053\ s $
Adaptive mesh $ 1 $ $ 828 $ $ 1.3212e-07 $ $ 1.9516e-06 $ $ 18.1240\ s $
$ 2 $ $ 1374 $ $ 7.2050e-08 $ $ 1.5499e-07 $ $ 25.0560\ s $
uniform mesh $ 22887 $ $ 1.1405e-08 $ $ 1.2477e-07 $ $ 95.6868\ s $
[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[7]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[8]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[9]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[10]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[11]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[12]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[13]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[14]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[15]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[16]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[17]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[18]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[19]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[20]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (2861)
  • HTML views (813)
  • Cited by (0)

[Back to Top]