• Previous Article
    Darcy-Forchheimer relation in Magnetohydrodynamic Jeffrey nanofluid flow over stretching surface
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme
doi: 10.3934/dcdss.2020400

Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method

1. 

MAE2D laboratory, University Abdelmalek Essaadi, Polydisciplinary Faculty of Larache, Road of Rabat, Larache, Morocco

2. 

National Meteorological Direction of Morocco, Airport Casa-Anfa, Casa Oasis - Casablanca, Morocco

* Corresponding author: tayeq.hatim@gmail.com (Hatim Tayeq)

Received  July 2019 Revised  October 2019 Published  June 2020

Fund Project: This work was partially supported by the project PICS Mairoc with a corporation with the Jean Leray Laboratory of Nantes university (France) and the National Meteorological Direction (DMN) of Morocco

In this work, we present a self-adaptive algorithm based on the techniques of the a posteriori estimates for the transport equation modeling the dispersion of pollutants in the atmospheric boundary layer at the local scale (industrial accident, urban air quality). The goal is to provide a powerful model for forecasting pollutants concentrations with better manipulation of available computing resources.

This analysis is based on a vertex-centered Finite Volume Method in space and an implicit Euler scheme in time. We apply and validate our model, using a self-adaptive algorithm, with real atmospheric data of the Grand Casablanca area (Morocco).

Citation: Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020400
References:
[1]

M. AfifA. BergamZ. Mghazli and R. Verfurth, A posteriori estimators of the finite volume discretization of an elliptic problem, Numer. Algorithms, 34 (2003), 127-136.  doi: 10.1023/B:NUMA.0000005400.45852.f3.  Google Scholar

[2]

B. AmazianeA. BergamM. El Ossmani and Z. Mghazli, A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Internat. J. Numer. Methods Fluids, 59 (2009), 259-284.  doi: 10.1002/fld.1456.  Google Scholar

[3]

A. BergamC. BernardiF. Hecht and Z. Mghazli, Error indicators for the mortar finite element discretization of a parabolic problem, Numer. Algorithms, 34 (2003), 187-201.  doi: 10.1023/B:NUMA.0000005362.95126.4c.  Google Scholar

[4]

A. BergamZ. Mghazli and R. Verfürth, Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire, Numer. Math., 95 (2003), 599-624.  doi: 10.1007/s00211-003-0460-2.  Google Scholar

[5]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[6]

W. Gong and H.-R. Cho, A numerical scheme for the integration of the gas-phase chemical rate equations in 3d atmospheric models, Atmospheric Environment, 27 (1993), 2147-2160.  doi: 10.1016/0960-1686(93)90044-Y.  Google Scholar

[7]

J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17 (1979), 187-202.  doi: 10.1007/BF00117978.  Google Scholar

[8]

V. MalletA. PourchetD. Quélo and B. Sportisse, Investigation of some numerical issues in a chemistry-transport model: Gas-phase simulations, J. Geophysical Research, 112 (2007), 301-317.  doi: 10.1029/2006JD008373.  Google Scholar

[9]

V. Mallet and B. Sportisse, 3-D chemistry-transport model Polair: Numerical issues, validation and automatic-differentiation strategy, Atmos. Chem. Phys. Discuss., 4 (2004), 1371-1392.  doi: 10.5194/acpd-4-1371-2004.  Google Scholar

[10]

V. Mallet and B. Sportisse, Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111 (2006), 1-15.  doi: 10.1029/2005JD006149.  Google Scholar

[11]

W. R. Stockwell, F. Kirchner, M. Kuhn and S. Seefeld, A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102 (1997). doi: 10.1029/97JD00849.  Google Scholar

[12]

W. R. StockwellP. MiddletonJ. S. Chang and X. Tang, The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95 (1990), 343-367.  doi: 10.1029/JD095iD10p16343.  Google Scholar

[13]

R. B. Stull, An Introduction to Boundary Layer Meteorology, Atmospheric Sciences Library, 13, Springer, Dordrecht, 1998. doi: 10.1007/978-94-009-3027-8.  Google Scholar

[14]

World Helth Organization, Ambient Air Pollution: Pollutants, WHO Report, WHO Library Cataloguing-in-Publication Data, 2018. Available from: http://www.who.int/airpollution/ambient/pollutants/en/. Google Scholar

[15]

L. WuV. MalletM. Bocquet and B. Sportisse, A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res., 113 (2008), 1-17.  doi: 10.1029/2008JD009991.  Google Scholar

show all references

References:
[1]

M. AfifA. BergamZ. Mghazli and R. Verfurth, A posteriori estimators of the finite volume discretization of an elliptic problem, Numer. Algorithms, 34 (2003), 127-136.  doi: 10.1023/B:NUMA.0000005400.45852.f3.  Google Scholar

[2]

B. AmazianeA. BergamM. El Ossmani and Z. Mghazli, A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Internat. J. Numer. Methods Fluids, 59 (2009), 259-284.  doi: 10.1002/fld.1456.  Google Scholar

[3]

A. BergamC. BernardiF. Hecht and Z. Mghazli, Error indicators for the mortar finite element discretization of a parabolic problem, Numer. Algorithms, 34 (2003), 187-201.  doi: 10.1023/B:NUMA.0000005362.95126.4c.  Google Scholar

[4]

A. BergamZ. Mghazli and R. Verfürth, Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire, Numer. Math., 95 (2003), 599-624.  doi: 10.1007/s00211-003-0460-2.  Google Scholar

[5]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[6]

W. Gong and H.-R. Cho, A numerical scheme for the integration of the gas-phase chemical rate equations in 3d atmospheric models, Atmospheric Environment, 27 (1993), 2147-2160.  doi: 10.1016/0960-1686(93)90044-Y.  Google Scholar

[7]

J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17 (1979), 187-202.  doi: 10.1007/BF00117978.  Google Scholar

[8]

V. MalletA. PourchetD. Quélo and B. Sportisse, Investigation of some numerical issues in a chemistry-transport model: Gas-phase simulations, J. Geophysical Research, 112 (2007), 301-317.  doi: 10.1029/2006JD008373.  Google Scholar

[9]

V. Mallet and B. Sportisse, 3-D chemistry-transport model Polair: Numerical issues, validation and automatic-differentiation strategy, Atmos. Chem. Phys. Discuss., 4 (2004), 1371-1392.  doi: 10.5194/acpd-4-1371-2004.  Google Scholar

[10]

V. Mallet and B. Sportisse, Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111 (2006), 1-15.  doi: 10.1029/2005JD006149.  Google Scholar

[11]

W. R. Stockwell, F. Kirchner, M. Kuhn and S. Seefeld, A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102 (1997). doi: 10.1029/97JD00849.  Google Scholar

[12]

W. R. StockwellP. MiddletonJ. S. Chang and X. Tang, The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95 (1990), 343-367.  doi: 10.1029/JD095iD10p16343.  Google Scholar

[13]

R. B. Stull, An Introduction to Boundary Layer Meteorology, Atmospheric Sciences Library, 13, Springer, Dordrecht, 1998. doi: 10.1007/978-94-009-3027-8.  Google Scholar

[14]

World Helth Organization, Ambient Air Pollution: Pollutants, WHO Report, WHO Library Cataloguing-in-Publication Data, 2018. Available from: http://www.who.int/airpollution/ambient/pollutants/en/. Google Scholar

[15]

L. WuV. MalletM. Bocquet and B. Sportisse, A comparison study of data assimilation algorithms for ozone forecasts, J. Geophys. Res., 113 (2008), 1-17.  doi: 10.1029/2008JD009991.  Google Scholar

Figure 1.  Vertex-centred cell in 2D
Figure 2.  The measurement stations on the Grand Casablanca area
Figure 3.  Numerical simulations obtained using a uniform mesh with 443 elements at two times $ t = 50 $, (A), and $ t = 1400 $, (B)
Figure 4.  Numerical simulations obtained using a uniform mesh with 22887 elements at two times $ t = 50 $, (A), and $ t = 1400 $, (B)
Figure 5.  (A) and (B) are the approximate solution using a adaptive mesh at $ t = 50 $ and $ t = 1400 $ respectively in level 2
Figure 6.  (A), (B) and (C) are the adaptively refined meshes at $ t = 50 $ in level 1, 2 and 3 respectively
Figure 7.  (A), (B) and (C) are the adaptively refined meshes at $ t = 1400 $ in level 1, 2 and 3 respectively
Figure 8.  Forecasted concentration of ozone before and after the implementation of our algorithm in two positions: Jahid station, (A) and Khansae station, (B)
Table 1.  The calculated parameters for the numerical model
Parameter Signification Value
$ D $ Diffusion coefficient $ 95.3\ m^2.s^{-1} $
$ V $ Velocity vector $ [3.9\ m.s^{-1}, 1.58\ m.s^{-1}] $
$ r $ Reaction balance $ 3.9 $
$ f $ Second member $ 2.95\ \mu g.m^{-3} $
$ c_0 $ Initial concentration $ 64\ \mu g.m^{-3} $
Parameter Signification Value
$ D $ Diffusion coefficient $ 95.3\ m^2.s^{-1} $
$ V $ Velocity vector $ [3.9\ m.s^{-1}, 1.58\ m.s^{-1}] $
$ r $ Reaction balance $ 3.9 $
$ f $ Second member $ 2.95\ \mu g.m^{-3} $
$ c_0 $ Initial concentration $ 64\ \mu g.m^{-3} $
Table 2.  The self-adaptive algorithm at an iteration
Step 1: Mesh generating and data input.
Step 2: Solve the discrete problem.
Step 3: Calculate the local error indicators.
Step 4: Mark mesh cells and adapt mesh.
Step 5: Solve the discrete problem in the new adapted mesh.
Step 6: if the stopping test is satisfied, go to the step 7
else, go to the step 3.
Step 7: Interpolate solution and visualization.
Step 1: Mesh generating and data input.
Step 2: Solve the discrete problem.
Step 3: Calculate the local error indicators.
Step 4: Mark mesh cells and adapt mesh.
Step 5: Solve the discrete problem in the new adapted mesh.
Step 6: if the stopping test is satisfied, go to the step 7
else, go to the step 3.
Step 7: Interpolate solution and visualization.
Table 3.  The results obtained before and after the application of the self-adaptive algorithm of the mesh at $ t = 50 $
Level Number of jump residual CPU
elements indicator indicator time
primal mesh $ 443 $ $ 5.0132e-03 $ $ 1.6088e-04 $ $ 1.4053\ s $
$ t=50 $ $ 1 $ $ 196 $ $ 9.8885e-05 $ $ 9.4178e-04 $ $ 6.0905\ s $
$ 2 $ $ 278 $ $ 3.1335e-05 $ $ 2.6348e-04 $ $ 7.2734\ s $
$ 3 $ $ 629 $ $ 7.8928e-06 $ $ 3.1045e-06 $ $ 8.2617\ s $
uniform mesh $ 22887 $ $ 1.3548e-07 $ $ 1.9964e-06 $ $ 53.4408\ s $
Level Number of jump residual CPU
elements indicator indicator time
primal mesh $ 443 $ $ 5.0132e-03 $ $ 1.6088e-04 $ $ 1.4053\ s $
$ t=50 $ $ 1 $ $ 196 $ $ 9.8885e-05 $ $ 9.4178e-04 $ $ 6.0905\ s $
$ 2 $ $ 278 $ $ 3.1335e-05 $ $ 2.6348e-04 $ $ 7.2734\ s $
$ 3 $ $ 629 $ $ 7.8928e-06 $ $ 3.1045e-06 $ $ 8.2617\ s $
uniform mesh $ 22887 $ $ 1.3548e-07 $ $ 1.9964e-06 $ $ 53.4408\ s $
Table 4.  The results obtained before and after the application of the self-adaptive algorithm of the mesh at $ t = 1400 $
Level Number of Jump Residual CPU
elements indicator indicator time
Primal mesh $ 443 $ $ 1.6483e-05 $ $ 1.9601e-05 $ $ 1.4053\ s $
Adaptive mesh $ 1 $ $ 828 $ $ 1.3212e-07 $ $ 1.9516e-06 $ $ 18.1240\ s $
$ 2 $ $ 1374 $ $ 7.2050e-08 $ $ 1.5499e-07 $ $ 25.0560\ s $
uniform mesh $ 22887 $ $ 1.1405e-08 $ $ 1.2477e-07 $ $ 95.6868\ s $
Level Number of Jump Residual CPU
elements indicator indicator time
Primal mesh $ 443 $ $ 1.6483e-05 $ $ 1.9601e-05 $ $ 1.4053\ s $
Adaptive mesh $ 1 $ $ 828 $ $ 1.3212e-07 $ $ 1.9516e-06 $ $ 18.1240\ s $
$ 2 $ $ 1374 $ $ 7.2050e-08 $ $ 1.5499e-07 $ $ 25.0560\ s $
uniform mesh $ 22887 $ $ 1.1405e-08 $ $ 1.2477e-07 $ $ 95.6868\ s $
[1]

Zhao-Han Sheng, Tingwen Huang, Jian-Guo Du, Qiang Mei, Hui Huang. Study on self-adaptive proportional control method for a class of output models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 459-477. doi: 10.3934/dcdsb.2009.11.459

[2]

Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017

[3]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020168

[5]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[6]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003

[7]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[8]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[9]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[10]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[11]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[12]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[13]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[14]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[15]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

[16]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006

[17]

Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems & Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685

[18]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[19]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[20]

Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial & Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (2457)
  • HTML views (522)
  • Cited by (0)

[Back to Top]