doi: 10.3934/dcdss.2020401

A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages

1. 

Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India

2. 

Department of Mathematics, College of Engineering and Technology, Bhubaneswar 751029, Odisha, India

3. 

Department of Mathematics, Gauhati, Guwahati 781014, India

* Corresponding author: Susanta Kumar Paikray

Received  November 2019 Published  June 2020

In this paper, a fuzzy stock replenishment policy implemented for inventory items that follows linear demand and Weibull deterioration under completely backlogged shortages. Moreover, to minimize the aggregate expense per unit time, the fuzzy optimal solution is obtained using general mathematical techniques by considering hexagonal fuzzy numbers and graded mean preference integration strategy. Finally, the complete exposition of the model is provided by numerical examples and sensitivity behavior of the associated parameters.

Citation: Deepak Kumar Nayak, Sudhansu Sekhar Routray, Susanta Kumar Paikray, Hemen Dutta. A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020401
References:
[1]

S. AgarwalS. Banerjee and S. Papachristos, Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37 (2013), 8912-8929.  doi: 10.1016/j.apm.2013.04.026.  Google Scholar

[2]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, An inventory model for deteriorating items under time varying demand condition, Int. J. Appl. Eng. Res., 10 (2015), 35770-35773.   Google Scholar

[3]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, A Deteriorating inventory model with shortages under pricedependent demand and inflation, Asian J. Math. Comput. Res., 8 (2016), 14-25.   Google Scholar

[4]

D. ChakrabortyD. K. Jana and T. K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments, Comput. Indus. Eng., 123 (2018), 157-179.  doi: 10.1016/j.cie.2018.06.022.  Google Scholar

[5]

R. P. Covert and G. C. Philip, An EOQ model for items with weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326.  doi: 10.1080/05695557308974918.  Google Scholar

[6]

D. S. Dinagar and J. R. Kannan, On fuzzy inventory model with allowable shortage, Internat. J. Pure. Appl. Math., 99 (2015), 65-76.  doi: 10.12732/ijpam.v99i1.6.  Google Scholar

[7]

I. DjordjevicD. Petrovic and G. Stojic, A fuzzy linear programming model for aggregated production planning (APP) in the automotive industry, Comput. Ind., 110 (2019), 48-63.  doi: 10.1016/j.compind.2019.05.004.  Google Scholar

[8]

S. FaddelA. T. Al-Awami and M. A. Abido, Fuzzy optimization for the operation of electric vehicle parking lots, Elect. Pow. Syst. Res., 145 (2017), 166-174.  doi: 10.1016/j.epsr.2017.01.008.  Google Scholar

[9]

P. M. Ghare and G. F. Schrader, A Model for exponentially decaying inventories, J. Ind. Eng., 14 (1963), 238-243.   Google Scholar

[10]

S. K. IndrajitS. RoutrayS. K. Paikray and U. K. Misra, Fuzzy economic productionquantity model with time dependent demand rate, Sci. J. Logis., 12 (2016), 193-198.   Google Scholar

[11]

C. K. JaggiS. PareekA. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages, Appl. Math. Model., 38 (2014), 5315-5333.  doi: 10.1016/j.apm.2014.04.025.  Google Scholar

[12]

S. Jain and M. Kumar, An inventory model with power demand pattern Weibull distribution deterioration and shortages, J. Indian Acad. Math., 30 (2008), 55-61.   Google Scholar

[13]

J. Kacprzyk and P. Stanieski, Long-term inventory policy-making through fuzzy decision-making models, Fuzzy Sets Syst., 8 (1982), 117-132.  doi: 10.1016/0165-0114(82)90002-1.  Google Scholar

[14]

C. Kao and W. K. Hsu, A single-period inventory model with fuzzy demand, Comput. Math. Appl., 43 (2002), 841-848.  doi: 10.1016/S0898-1221(01)00325-X.  Google Scholar

[15]

M. T. LamataD. Pelta and J. L. Verdegay, Optimisation problems as decision problems: The case of fuzzy optimisation problems, Inform. Sci., 460/461 (2018), 377-388.  doi: 10.1016/j.ins.2017.07.035.  Google Scholar

[16]

H. M. Lee and J. S. Yao, Economic production quantity for fuzzy demand and fuzzy production quantity., European J. Oper. Res., 109 (1998), 203-211.  doi: 10.1016/S0377-2217(97)00200-2.  Google Scholar

[17]

J. Mezei and S. Nikou, Fuzzy optimization to improve mobile health and wellness recommendation systems, Knowledge-Based Syst., 142 (2018), 108-116.  doi: 10.1016/j.knosys.2017.11.030.  Google Scholar

[18]

S. MishraG. MisraU. K. Misra and L. K. Raju, An inventory model with quadratic demand pattern and deterioration with shortages under the influence of inflation, Math. Financ. Lett., 1 (2012), 57-67.   Google Scholar

[19]

S. MishraS. BarikS. K. Paikray and U. K. Misra, An inventory control model of deteriorating items in fuzzy environment, Global J. Pure Appl. Math., 11 (2015), 1301-1312.   Google Scholar

[20]

S. MisraU. K. MisraS. Barik and S. K. Paikray, An inventory model for inflation induced demand and Weibull deteriorating items, Internat. J. Adv. Eng. Technol., 4 (2012), 176-182.   Google Scholar

[21]

H. S. NajafiS. A. Edalatpanah and H. Dutta, A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters, Alexandria Eng. J., 55 (2016), 2589-2595.   Google Scholar

[22]

S. PalG. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166.  doi: 10.1016/j.ijpe.2014.05.007.  Google Scholar

[23]

K. S. Park, Fuzzy set theoretical interpretation of economic order quantity, IEEE Trans., 17 (1987), 1082-1084.   Google Scholar

[24]

L. K. RajuU. K. MisraS. Mishra and G. Misra, An inventory model for Weibull deteriorating items with linear demand pattern, J. Comput. Math. Sci., 3 (2012), 440-445.   Google Scholar

[25]

S. S. RoutrayS. K. PaikrayS. Misra and U. K. Misra, Fuzzy inventory model with single item under time dependent demand and holding cost, Internat. J. Adv. Res. Sci. Eng., 6 (2017), 1604-1618.   Google Scholar

[26]

S. S. Sanni and W. I. E. Chukwu, An economic order quantity model for items with three-parameter Weibull distribution deterioration, ramp-type demand and shortages, Appl. Math. Model., 37 (2013), 9698-9706.  doi: 10.1016/j.apm.2013.05.017.  Google Scholar

[27]

S. Sarbjit and S. S. Raj, An optimal inventory policy for items having linear demand and variable deterioration rate with trade credit, J. Math. Stat., 5 (2009), 330-333.  doi: 10.3844/jmssp.2009.330.333.  Google Scholar

[28]

Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIEE Trans., 9 (1977), 108-112.  doi: 10.1080/05695557708975129.  Google Scholar

[29]

I. Tomba and K. H. Brojendro, An inventory model with linear demand pattern and deterioration with shortages, J. Indian Acad. Math., 33 (2011), 607-612.   Google Scholar

[30]

C. K. TripathyL. M. Pradhan and U. Mishra, An EPQ model for linear deteriorating item with variable holding cost, Int. J. Comput. Appl. Math., 5 (2010), 209-215.   Google Scholar

[31]

G. Viji and K. Karthikeyan, An economic production quantity model for three levels of production with Weibull distribution deterioration and shortage, Ain Shams Eng. J., 9 (2018), 1481-1487.  doi: 10.1016/j.asej.2016.10.006.  Google Scholar

[32] T. M. Whitin, The Theory of Inventory Management, 2$^{nd}$ edition, Princeton University Press, Princeton, New Jersey, 1957.   Google Scholar
[33]

H-L. Yang, Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation, Int. J. Prod. Econ., 138 (2012), 107-116.  doi: 10.1016/j.ijpe.2012.03.007.  Google Scholar

[34]

H.-M. Lee and J.-S. Yao, Economic order quantity in fuzzy sense for inventory without back-order model, Fuzzy Sets Syst., 105 (1999), 13-31.  doi: 10.1016/S0165-0114(97)00227-3.  Google Scholar

[35]

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[36]

H.-J. Zimmerman, Fuzzy programming and linear programming with several objective Functions, Fuzzy Sets Syst., 1 (1978), 45-55.  doi: 10.1016/0165-0114(78)90031-3.  Google Scholar

show all references

References:
[1]

S. AgarwalS. Banerjee and S. Papachristos, Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37 (2013), 8912-8929.  doi: 10.1016/j.apm.2013.04.026.  Google Scholar

[2]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, An inventory model for deteriorating items under time varying demand condition, Int. J. Appl. Eng. Res., 10 (2015), 35770-35773.   Google Scholar

[3]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, A Deteriorating inventory model with shortages under pricedependent demand and inflation, Asian J. Math. Comput. Res., 8 (2016), 14-25.   Google Scholar

[4]

D. ChakrabortyD. K. Jana and T. K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments, Comput. Indus. Eng., 123 (2018), 157-179.  doi: 10.1016/j.cie.2018.06.022.  Google Scholar

[5]

R. P. Covert and G. C. Philip, An EOQ model for items with weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326.  doi: 10.1080/05695557308974918.  Google Scholar

[6]

D. S. Dinagar and J. R. Kannan, On fuzzy inventory model with allowable shortage, Internat. J. Pure. Appl. Math., 99 (2015), 65-76.  doi: 10.12732/ijpam.v99i1.6.  Google Scholar

[7]

I. DjordjevicD. Petrovic and G. Stojic, A fuzzy linear programming model for aggregated production planning (APP) in the automotive industry, Comput. Ind., 110 (2019), 48-63.  doi: 10.1016/j.compind.2019.05.004.  Google Scholar

[8]

S. FaddelA. T. Al-Awami and M. A. Abido, Fuzzy optimization for the operation of electric vehicle parking lots, Elect. Pow. Syst. Res., 145 (2017), 166-174.  doi: 10.1016/j.epsr.2017.01.008.  Google Scholar

[9]

P. M. Ghare and G. F. Schrader, A Model for exponentially decaying inventories, J. Ind. Eng., 14 (1963), 238-243.   Google Scholar

[10]

S. K. IndrajitS. RoutrayS. K. Paikray and U. K. Misra, Fuzzy economic productionquantity model with time dependent demand rate, Sci. J. Logis., 12 (2016), 193-198.   Google Scholar

[11]

C. K. JaggiS. PareekA. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages, Appl. Math. Model., 38 (2014), 5315-5333.  doi: 10.1016/j.apm.2014.04.025.  Google Scholar

[12]

S. Jain and M. Kumar, An inventory model with power demand pattern Weibull distribution deterioration and shortages, J. Indian Acad. Math., 30 (2008), 55-61.   Google Scholar

[13]

J. Kacprzyk and P. Stanieski, Long-term inventory policy-making through fuzzy decision-making models, Fuzzy Sets Syst., 8 (1982), 117-132.  doi: 10.1016/0165-0114(82)90002-1.  Google Scholar

[14]

C. Kao and W. K. Hsu, A single-period inventory model with fuzzy demand, Comput. Math. Appl., 43 (2002), 841-848.  doi: 10.1016/S0898-1221(01)00325-X.  Google Scholar

[15]

M. T. LamataD. Pelta and J. L. Verdegay, Optimisation problems as decision problems: The case of fuzzy optimisation problems, Inform. Sci., 460/461 (2018), 377-388.  doi: 10.1016/j.ins.2017.07.035.  Google Scholar

[16]

H. M. Lee and J. S. Yao, Economic production quantity for fuzzy demand and fuzzy production quantity., European J. Oper. Res., 109 (1998), 203-211.  doi: 10.1016/S0377-2217(97)00200-2.  Google Scholar

[17]

J. Mezei and S. Nikou, Fuzzy optimization to improve mobile health and wellness recommendation systems, Knowledge-Based Syst., 142 (2018), 108-116.  doi: 10.1016/j.knosys.2017.11.030.  Google Scholar

[18]

S. MishraG. MisraU. K. Misra and L. K. Raju, An inventory model with quadratic demand pattern and deterioration with shortages under the influence of inflation, Math. Financ. Lett., 1 (2012), 57-67.   Google Scholar

[19]

S. MishraS. BarikS. K. Paikray and U. K. Misra, An inventory control model of deteriorating items in fuzzy environment, Global J. Pure Appl. Math., 11 (2015), 1301-1312.   Google Scholar

[20]

S. MisraU. K. MisraS. Barik and S. K. Paikray, An inventory model for inflation induced demand and Weibull deteriorating items, Internat. J. Adv. Eng. Technol., 4 (2012), 176-182.   Google Scholar

[21]

H. S. NajafiS. A. Edalatpanah and H. Dutta, A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters, Alexandria Eng. J., 55 (2016), 2589-2595.   Google Scholar

[22]

S. PalG. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166.  doi: 10.1016/j.ijpe.2014.05.007.  Google Scholar

[23]

K. S. Park, Fuzzy set theoretical interpretation of economic order quantity, IEEE Trans., 17 (1987), 1082-1084.   Google Scholar

[24]

L. K. RajuU. K. MisraS. Mishra and G. Misra, An inventory model for Weibull deteriorating items with linear demand pattern, J. Comput. Math. Sci., 3 (2012), 440-445.   Google Scholar

[25]

S. S. RoutrayS. K. PaikrayS. Misra and U. K. Misra, Fuzzy inventory model with single item under time dependent demand and holding cost, Internat. J. Adv. Res. Sci. Eng., 6 (2017), 1604-1618.   Google Scholar

[26]

S. S. Sanni and W. I. E. Chukwu, An economic order quantity model for items with three-parameter Weibull distribution deterioration, ramp-type demand and shortages, Appl. Math. Model., 37 (2013), 9698-9706.  doi: 10.1016/j.apm.2013.05.017.  Google Scholar

[27]

S. Sarbjit and S. S. Raj, An optimal inventory policy for items having linear demand and variable deterioration rate with trade credit, J. Math. Stat., 5 (2009), 330-333.  doi: 10.3844/jmssp.2009.330.333.  Google Scholar

[28]

Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIEE Trans., 9 (1977), 108-112.  doi: 10.1080/05695557708975129.  Google Scholar

[29]

I. Tomba and K. H. Brojendro, An inventory model with linear demand pattern and deterioration with shortages, J. Indian Acad. Math., 33 (2011), 607-612.   Google Scholar

[30]

C. K. TripathyL. M. Pradhan and U. Mishra, An EPQ model for linear deteriorating item with variable holding cost, Int. J. Comput. Appl. Math., 5 (2010), 209-215.   Google Scholar

[31]

G. Viji and K. Karthikeyan, An economic production quantity model for three levels of production with Weibull distribution deterioration and shortage, Ain Shams Eng. J., 9 (2018), 1481-1487.  doi: 10.1016/j.asej.2016.10.006.  Google Scholar

[32] T. M. Whitin, The Theory of Inventory Management, 2$^{nd}$ edition, Princeton University Press, Princeton, New Jersey, 1957.   Google Scholar
[33]

H-L. Yang, Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation, Int. J. Prod. Econ., 138 (2012), 107-116.  doi: 10.1016/j.ijpe.2012.03.007.  Google Scholar

[34]

H.-M. Lee and J.-S. Yao, Economic order quantity in fuzzy sense for inventory without back-order model, Fuzzy Sets Syst., 105 (1999), 13-31.  doi: 10.1016/S0165-0114(97)00227-3.  Google Scholar

[35]

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[36]

H.-J. Zimmerman, Fuzzy programming and linear programming with several objective Functions, Fuzzy Sets Syst., 1 (1978), 45-55.  doi: 10.1016/0165-0114(78)90031-3.  Google Scholar

Figure 1.  Inventory level at any time $ t $
Figure 2.  Effect of parameter α on τ
Figure 3.  Effect of parameter $ \alpha $ on G$ \mathbb{Z}(\tau) $
Figure 4.  Effect of parameter $ \alpha $ on $ W1 $
Figure 5.  Effect of parameter $ \beta $ on $ \tau $
Figure 6.  Effect of parameter $ \beta $ on G$ \mathbb{Z}(\tau) $
Figure 7.  Effect of parameter $ \beta $ on $ W1 $
Figure 8.  Effect of parameter $ \eta $ on $ \tau $
Figure 9.  Effect of parameter $ \eta $ on G$ \mathbb{Z}(\tau) $
Figure 10.  Effect of parameter $ \eta $ on $ W1 $
Figure 11.  Effect of parameter $ \gamma $ on $ \tau $
Figure 12.  Effect of parameter $ \gamma $ on G$ \mathbb{Z}(\tau) $
Figure 13.  Effect of parameter $ \gamma $ on $ W1 $
Figure 14.  Effect of parameter $ T $ on $ \tau $
Figure 15.  Effect of parameter $ T $ on G$ \mathbb{Z}(\tau) $
Figure 16.  Effect of parameter $ T $ on $ W1 $
Table 1.  Sensitivity of parameter $ \alpha $
$ \alpha $ $ \tau $ $ G\mathbb{Z}(t) $ $ W1 $
200 1.23281 6225.45 442.512
250 1.22869 7661.34 543.03
300 1.22586 9097.01 643.548
350 1.2238 10532.6 744.067
400 1.22223 11968. 844.586
$ \alpha $ $ \tau $ $ G\mathbb{Z}(t) $ $ W1 $
200 1.23281 6225.45 442.512
250 1.22869 7661.34 543.03
300 1.22586 9097.01 643.548
350 1.2238 10532.6 744.067
400 1.22223 11968. 844.586
Table 2.  Sensitivity of parameter $ \beta $
$\beta$$\tau$$G\mathbb{Z}(t)$$W1$
201.232816225.45442.512
251.237786345.58452.624
301.242556465.34462.738
351.247126584.76472.852
401.251516703.86482.968
$\beta$$\tau$$G\mathbb{Z}(t)$$W1$
201.232816225.45442.512
251.237786345.58452.624
301.242556465.34462.738
351.247126584.76472.852
401.251516703.86482.968
Table 3.  Sensitivity of parameter $ \eta $
$\eta$$\tau$$G\mathbb{Z}(t)$$W1$
0.021.232816225.45442.512
0.031.214816287.83443.496
0.041.198786345.67444.357
0.051.184326399.64445.12
0.061.171176450.29445.804
$\eta$$\tau$$G\mathbb{Z}(t)$$W1$
0.021.232816225.45442.512
0.031.214816287.83443.496
0.041.198786345.67444.357
0.051.184326399.64445.12
0.061.171176450.29445.804
Table 4.  Sensitivity of parameter $ \gamma $
$\gamma$$\tau$$G\mathbb{Z}(t)$$W1$
41.232816225.45442.512
51.223686232.24442.473
61.21416240.8442.458
71.204336250.49442.45
81.194596260.82442.439
$\gamma$$\tau$$G\mathbb{Z}(t)$$W1$
41.232816225.45442.512
51.223686232.24442.473
61.21416240.8442.458
71.204336250.49442.45
81.194596260.82442.439
Table 5.  Sensitivity of parameter T
$T$$\tau$$G\mathbb{Z}(t)$$W1$
21.232816225.45442.512
2.11.28846586.13467.245
2.21.342816954.19492.284
2.31.3967330.517.635
2.41.447947713.94543.306
$T$$\tau$$G\mathbb{Z}(t)$$W1$
21.232816225.45442.512
2.11.28846586.13467.245
2.21.342816954.19492.284
2.31.3967330.517.635
2.41.447947713.94543.306
[1]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[2]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[3]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[4]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[5]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[6]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Yunqing Zou, Zhengkui Lin, Dongya Han, T. C. Edwin Cheng, Chin-Chia Wu. Two-agent integrated scheduling of production and distribution operations with fixed departure times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021005

[9]

Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412

[10]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[11]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[12]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[13]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[17]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[18]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[19]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[20]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (45)
  • HTML views (254)
  • Cited by (0)

[Back to Top]