$ \alpha $ | $ \tau $ | $ G\mathbb{Z}(t) $ | $ W1 $ |
200 | 1.23281 | 6225.45 | 442.512 |
250 | 1.22869 | 7661.34 | 543.03 |
300 | 1.22586 | 9097.01 | 643.548 |
350 | 1.2238 | 10532.6 | 744.067 |
400 | 1.22223 | 11968. | 844.586 |
In this paper, a fuzzy stock replenishment policy implemented for inventory items that follows linear demand and Weibull deterioration under completely backlogged shortages. Moreover, to minimize the aggregate expense per unit time, the fuzzy optimal solution is obtained using general mathematical techniques by considering hexagonal fuzzy numbers and graded mean preference integration strategy. Finally, the complete exposition of the model is provided by numerical examples and sensitivity behavior of the associated parameters.
Citation: |
Table 1.
Sensitivity of parameter
$ \alpha $ | $ \tau $ | $ G\mathbb{Z}(t) $ | $ W1 $ |
200 | 1.23281 | 6225.45 | 442.512 |
250 | 1.22869 | 7661.34 | 543.03 |
300 | 1.22586 | 9097.01 | 643.548 |
350 | 1.2238 | 10532.6 | 744.067 |
400 | 1.22223 | 11968. | 844.586 |
Table 2.
Sensitivity of parameter
$\beta$ | $\tau$ | $G\mathbb{Z}(t)$ | $W1$ |
20 | 1.23281 | 6225.45 | 442.512 |
25 | 1.23778 | 6345.58 | 452.624 |
30 | 1.24255 | 6465.34 | 462.738 |
35 | 1.24712 | 6584.76 | 472.852 |
40 | 1.25151 | 6703.86 | 482.968 |
Table 3.
Sensitivity of parameter
$\eta$ | $\tau$ | $G\mathbb{Z}(t)$ | $W1$ |
0.02 | 1.23281 | 6225.45 | 442.512 |
0.03 | 1.21481 | 6287.83 | 443.496 |
0.04 | 1.19878 | 6345.67 | 444.357 |
0.05 | 1.18432 | 6399.64 | 445.12 |
0.06 | 1.17117 | 6450.29 | 445.804 |
Table 4.
Sensitivity of parameter
$\gamma$ | $\tau$ | $G\mathbb{Z}(t)$ | $W1$ |
4 | 1.23281 | 6225.45 | 442.512 |
5 | 1.22368 | 6232.24 | 442.473 |
6 | 1.2141 | 6240.8 | 442.458 |
7 | 1.20433 | 6250.49 | 442.45 |
8 | 1.19459 | 6260.82 | 442.439 |
Table 5. Sensitivity of parameter T
$T$ | $\tau$ | $G\mathbb{Z}(t)$ | $W1$ |
2 | 1.23281 | 6225.45 | 442.512 |
2.1 | 1.2884 | 6586.13 | 467.245 |
2.2 | 1.34281 | 6954.19 | 492.284 |
2.3 | 1.396 | 7330. | 517.635 |
2.4 | 1.44794 | 7713.94 | 543.306 |
[1] | S. Agarwal, S. Banerjee and S. Papachristos, Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37 (2013), 8912-8929. doi: 10.1016/j.apm.2013.04.026. |
[2] | S. Barik, S. K. Paikray, S. Mishra and U. K. Misra, An inventory model for deteriorating items under time varying demand condition, Int. J. Appl. Eng. Res., 10 (2015), 35770-35773. |
[3] | S. Barik, S. K. Paikray, S. Mishra and U. K. Misra, A Deteriorating inventory model with shortages under pricedependent demand and inflation, Asian J. Math. Comput. Res., 8 (2016), 14-25. |
[4] | D. Chakraborty, D. K. Jana and T. K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments, Comput. Indus. Eng., 123 (2018), 157-179. doi: 10.1016/j.cie.2018.06.022. |
[5] | R. P. Covert and G. C. Philip, An EOQ model for items with weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326. doi: 10.1080/05695557308974918. |
[6] | D. S. Dinagar and J. R. Kannan, On fuzzy inventory model with allowable shortage, Internat. J. Pure. Appl. Math., 99 (2015), 65-76. doi: 10.12732/ijpam.v99i1.6. |
[7] | I. Djordjevic, D. Petrovic and G. Stojic, A fuzzy linear programming model for aggregated production planning (APP) in the automotive industry, Comput. Ind., 110 (2019), 48-63. doi: 10.1016/j.compind.2019.05.004. |
[8] | S. Faddel, A. T. Al-Awami and M. A. Abido, Fuzzy optimization for the operation of electric vehicle parking lots, Elect. Pow. Syst. Res., 145 (2017), 166-174. doi: 10.1016/j.epsr.2017.01.008. |
[9] | P. M. Ghare and G. F. Schrader, A Model for exponentially decaying inventories, J. Ind. Eng., 14 (1963), 238-243. |
[10] | S. K. Indrajit, S. Routray, S. K. Paikray and U. K. Misra, Fuzzy economic productionquantity model with time dependent demand rate, Sci. J. Logis., 12 (2016), 193-198. |
[11] | C. K. Jaggi, S. Pareek, A. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages, Appl. Math. Model., 38 (2014), 5315-5333. doi: 10.1016/j.apm.2014.04.025. |
[12] | S. Jain and M. Kumar, An inventory model with power demand pattern Weibull distribution deterioration and shortages, J. Indian Acad. Math., 30 (2008), 55-61. |
[13] | J. Kacprzyk and P. Stanieski, Long-term inventory policy-making through fuzzy decision-making models, Fuzzy Sets Syst., 8 (1982), 117-132. doi: 10.1016/0165-0114(82)90002-1. |
[14] | C. Kao and W. K. Hsu, A single-period inventory model with fuzzy demand, Comput. Math. Appl., 43 (2002), 841-848. doi: 10.1016/S0898-1221(01)00325-X. |
[15] | M. T. Lamata, D. Pelta and J. L. Verdegay, Optimisation problems as decision problems: The case of fuzzy optimisation problems, Inform. Sci., 460/461 (2018), 377-388. doi: 10.1016/j.ins.2017.07.035. |
[16] | H. M. Lee and J. S. Yao, Economic production quantity for fuzzy demand and fuzzy production quantity., European J. Oper. Res., 109 (1998), 203-211. doi: 10.1016/S0377-2217(97)00200-2. |
[17] | J. Mezei and S. Nikou, Fuzzy optimization to improve mobile health and wellness recommendation systems, Knowledge-Based Syst., 142 (2018), 108-116. doi: 10.1016/j.knosys.2017.11.030. |
[18] | S. Mishra, G. Misra, U. K. Misra and L. K. Raju, An inventory model with quadratic demand pattern and deterioration with shortages under the influence of inflation, Math. Financ. Lett., 1 (2012), 57-67. |
[19] | S. Mishra, S. Barik, S. K. Paikray and U. K. Misra, An inventory control model of deteriorating items in fuzzy environment, Global J. Pure Appl. Math., 11 (2015), 1301-1312. |
[20] | S. Misra, U. K. Misra, S. Barik and S. K. Paikray, An inventory model for inflation induced demand and Weibull deteriorating items, Internat. J. Adv. Eng. Technol., 4 (2012), 176-182. |
[21] | H. S. Najafi, S. A. Edalatpanah and H. Dutta, A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters, Alexandria Eng. J., 55 (2016), 2589-2595. |
[22] | S. Pal, G. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166. doi: 10.1016/j.ijpe.2014.05.007. |
[23] | K. S. Park, Fuzzy set theoretical interpretation of economic order quantity, IEEE Trans., 17 (1987), 1082-1084. |
[24] | L. K. Raju, U. K. Misra, S. Mishra and G. Misra, An inventory model for Weibull deteriorating items with linear demand pattern, J. Comput. Math. Sci., 3 (2012), 440-445. |
[25] | S. S. Routray, S. K. Paikray, S. Misra and U. K. Misra, Fuzzy inventory model with single item under time dependent demand and holding cost, Internat. J. Adv. Res. Sci. Eng., 6 (2017), 1604-1618. |
[26] | S. S. Sanni and W. I. E. Chukwu, An economic order quantity model for items with three-parameter Weibull distribution deterioration, ramp-type demand and shortages, Appl. Math. Model., 37 (2013), 9698-9706. doi: 10.1016/j.apm.2013.05.017. |
[27] | S. Sarbjit and S. S. Raj, An optimal inventory policy for items having linear demand and variable deterioration rate with trade credit, J. Math. Stat., 5 (2009), 330-333. doi: 10.3844/jmssp.2009.330.333. |
[28] | Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIEE Trans., 9 (1977), 108-112. doi: 10.1080/05695557708975129. |
[29] | I. Tomba and K. H. Brojendro, An inventory model with linear demand pattern and deterioration with shortages, J. Indian Acad. Math., 33 (2011), 607-612. |
[30] | C. K. Tripathy, L. M. Pradhan and U. Mishra, An EPQ model for linear deteriorating item with variable holding cost, Int. J. Comput. Appl. Math., 5 (2010), 209-215. |
[31] | G. Viji and K. Karthikeyan, An economic production quantity model for three levels of production with Weibull distribution deterioration and shortage, Ain Shams Eng. J., 9 (2018), 1481-1487. doi: 10.1016/j.asej.2016.10.006. |
[32] | T. M. Whitin, The Theory of Inventory Management, 2$^{nd}$ edition, Princeton University Press, Princeton, New Jersey, 1957. |
[33] | H-L. Yang, Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation, Int. J. Prod. Econ., 138 (2012), 107-116. doi: 10.1016/j.ijpe.2012.03.007. |
[34] | H.-M. Lee and J.-S. Yao, Economic order quantity in fuzzy sense for inventory without back-order model, Fuzzy Sets Syst., 105 (1999), 13-31. doi: 10.1016/S0165-0114(97)00227-3. |
[35] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X. |
[36] | H.-J. Zimmerman, Fuzzy programming and linear programming with several objective Functions, Fuzzy Sets Syst., 1 (1978), 45-55. doi: 10.1016/0165-0114(78)90031-3. |
Inventory level at any time
Effect of parameter α on τ
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter
Effect of parameter