# American Institute of Mathematical Sciences

• Previous Article
Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method
• DCDS-S Home
• This Issue
• Next Article
Oscillation criteria for kernel function dependent fractional dynamic equations

## Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme

 1 Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran 2 Department of Mathematics, University of Mazandaran, Babolsar, Iran, Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa 3 Department of Mathematics, Cankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania

* Corresponding author: Hamid Safdari

Received  December 2019 Revised  January 2020 Published  June 2020

This paper develops a numerical scheme for finding the approximate solution of space fractional order of the diffusion equation (SFODE). Firstly, the compact finite difference (CFD) with convergence order $\mathcal{O}(\delta \tau ^{2})$ is used for discretizing time derivative. Afterwards, the spatial fractional derivative is approximated by the Chebyshev collocation method of the fourth kind. Furthermore, time-discrete stability and convergence analysis are presented. Finally, two examples are numerically investigated by the proposed method. The examples illustrate the performance and accuracy of our method compared to existing methods presented in the literature.

Citation: Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020402
##### References:

show all references

##### References:
Plots of the approximate solution (left side) and absolute error (right side) of Example 5.1 at $T = 1$, $M = 400$ and $N = 5$
The maximum absolute error and error norm $L_{2}$ of Example 5.1 at $T = 1$, $N = 5$ and $M = 200,400,600, \ldots, 3000$
Error histories of Example 5.1 at $T = 1$, $N = 5$ and $M = 100,200,400,800, 1600$
Error histories of Example 5.1 at $T = 1$, $M = 400$ and $N = 3, 5, 7, 9$
Error histories of Example 5.2 at $T = 1$, with $M = 100,200,400,800, 1600,$ $N = 5$ (left side) and $N = 7$ (right side)
The absolute error of Example 5.1 at $T = 1$
 $x$ with $N=7$ in with $N=7$ in with $N=3$ in our method with $N=3$ [15] [27] [30] $0$ $2.81\times 10^{-5}$ $0$ $0$ $4.77\times 10^{-17}$ $0.1$ $4.26\times 10^{-5}$ $4.66\times 10^{-5}$ $5.46\times 10^{-6}$ $3.17\times 10^{-9}$ $0.2$ $5.39\times 10^{-5}$ $7.74\times 10^{-5}$ $8.51\times 10^{-6}$ $5.85\times 10^{-9}$ $0.3$ $6.12\times 10^{-5}$ $5.00\times 10^{-5}$ $9.60\times 10^{-6}$ $7.97\times 10^{-9}$ $0.4$ $6.48\times 10^{-5}$ $2.30\times 10^{-5}$ $9.18\times 10^{-6}$ $9.44\times 10^{-9}$ $0.5$ $6.45\times 10^{-5}$ $2.74\times 10^{-5}$ $7.69\times 10^{-6}$ $1.02\times 10^{-8}$ $0.6$ $5.98\times 10^{-5}$ $4.38\times 10^{-5}$ $5.60\times 10^{-6}$ $1.01\times 10^{-8}$ $0.7$ $5.23\times 10^{-5}$ $3.87\times 10^{-5}$ $3.33\times 10^{-6}$ $9.12\times 10^{-9}$ $0.8$ $4.48\times 10^{-5}$ $1.01\times 10^{-5}$ $1.34\times 10^{-6}$ $7.17\times 10^{-9}$ $0.9$ $3.91\times 10^{-5}$ $3.35\times 10^{-5}$ $8.39\times 10^{-8}$ $4.16\times 10^{-9}$ $1.0$ $2.81\times 10^{-5}$ $0$ $0$ $7.55\times 10^{-17}$
 $x$ with $N=7$ in with $N=7$ in with $N=3$ in our method with $N=3$ [15] [27] [30] $0$ $2.81\times 10^{-5}$ $0$ $0$ $4.77\times 10^{-17}$ $0.1$ $4.26\times 10^{-5}$ $4.66\times 10^{-5}$ $5.46\times 10^{-6}$ $3.17\times 10^{-9}$ $0.2$ $5.39\times 10^{-5}$ $7.74\times 10^{-5}$ $8.51\times 10^{-6}$ $5.85\times 10^{-9}$ $0.3$ $6.12\times 10^{-5}$ $5.00\times 10^{-5}$ $9.60\times 10^{-6}$ $7.97\times 10^{-9}$ $0.4$ $6.48\times 10^{-5}$ $2.30\times 10^{-5}$ $9.18\times 10^{-6}$ $9.44\times 10^{-9}$ $0.5$ $6.45\times 10^{-5}$ $2.74\times 10^{-5}$ $7.69\times 10^{-6}$ $1.02\times 10^{-8}$ $0.6$ $5.98\times 10^{-5}$ $4.38\times 10^{-5}$ $5.60\times 10^{-6}$ $1.01\times 10^{-8}$ $0.7$ $5.23\times 10^{-5}$ $3.87\times 10^{-5}$ $3.33\times 10^{-6}$ $9.12\times 10^{-9}$ $0.8$ $4.48\times 10^{-5}$ $1.01\times 10^{-5}$ $1.34\times 10^{-6}$ $7.17\times 10^{-9}$ $0.9$ $3.91\times 10^{-5}$ $3.35\times 10^{-5}$ $8.39\times 10^{-8}$ $4.16\times 10^{-9}$ $1.0$ $2.81\times 10^{-5}$ $0$ $0$ $7.55\times 10^{-17}$
The absolute error of Example 5.1 at $T = 2$
 $x$ with $N=5$ in with $N=5$ in with $N=3$ in our method with $N=3$  [15] [27] [30] $0$ $2.74\times 10^{-5}$ $0$ $0$ $1.86\times 10^{-17}$ $0.1$ $4.20\times 10^{-5}$ $4.47\times 10^{-6}$ $3.33\times 10^{-6}$ $1.28\times 10^{-8}$ $0.2$ $3.76\times 10^{-5}$ $2.78\times 10^{-7}$ $5.65\times 10^{-6}$ $2.05\times 10^{-8}$ $0.3$ $8.44\times 10^{-5}$ $5.81\times 10^{-6}$ $7.05\times 10^{-6}$ $2.40\times 10^{-8}$ $0.4$ $3.27\times 10^{-5}$ $1.02\times 10^{-5}$ $7.64\times 10^{-6}$ $2.40\times 10^{-8}$ $0.5$ $3.61\times 10^{-5}$ $1.17\times 10^{-5}$ $7.52\times 10^{-6}$ $2.15\times 10^{-8}$ $0.6$ $1.94\times 10^{-5}$ $1.08\times 10^{-5}$ $6.80\times 10^{-6}$ $1.72\times 10^{-8}$ $0.7$ $2.95\times 10^{-5}$ $8.54\times 10^{-6}$ $5.59\times 10^{-6}$ $1.21\times 10^{-8}$ $0.8$ $4.92\times 10^{-5}$ $6.06\times 10^{-6}$ $3.98\times 10^{-6}$ $6.93\times 10^{-9}$ $0.9$ $2.83\times 10^{-5}$ $3.67\times 10^{-6}$ $2.08\times 10^{-6}$ $2.62\times 10^{-9}$ $1.0$ $7.73\times 10^{-5}$ $0$ $0$ $8.24\times 10^{-18}$
 $x$ with $N=5$ in with $N=5$ in with $N=3$ in our method with $N=3$  [15] [27] [30] $0$ $2.74\times 10^{-5}$ $0$ $0$ $1.86\times 10^{-17}$ $0.1$ $4.20\times 10^{-5}$ $4.47\times 10^{-6}$ $3.33\times 10^{-6}$ $1.28\times 10^{-8}$ $0.2$ $3.76\times 10^{-5}$ $2.78\times 10^{-7}$ $5.65\times 10^{-6}$ $2.05\times 10^{-8}$ $0.3$ $8.44\times 10^{-5}$ $5.81\times 10^{-6}$ $7.05\times 10^{-6}$ $2.40\times 10^{-8}$ $0.4$ $3.27\times 10^{-5}$ $1.02\times 10^{-5}$ $7.64\times 10^{-6}$ $2.40\times 10^{-8}$ $0.5$ $3.61\times 10^{-5}$ $1.17\times 10^{-5}$ $7.52\times 10^{-6}$ $2.15\times 10^{-8}$ $0.6$ $1.94\times 10^{-5}$ $1.08\times 10^{-5}$ $6.80\times 10^{-6}$ $1.72\times 10^{-8}$ $0.7$ $2.95\times 10^{-5}$ $8.54\times 10^{-6}$ $5.59\times 10^{-6}$ $1.21\times 10^{-8}$ $0.8$ $4.92\times 10^{-5}$ $6.06\times 10^{-6}$ $3.98\times 10^{-6}$ $6.93\times 10^{-9}$ $0.9$ $2.83\times 10^{-5}$ $3.67\times 10^{-6}$ $2.08\times 10^{-6}$ $2.62\times 10^{-9}$ $1.0$ $7.73\times 10^{-5}$ $0$ $0$ $8.24\times 10^{-18}$
The absolute error of Example 5.1 at $T = 10$
 $x$ $N=3$ $N=5$ $N=7$ $0$ $5.82\times 10^{-21}$ $5.93\times 10^{-22}$ $4.43\times 10^{-21}$ $0.2$ $1.01\times 10^{-9}$ $4.74\times 10^{-9}$ $2.28\times 10^{-9}$ $0.4$ $8.21\times 10^{-9}$ $8.11\times 10^{-9}$ $4.21\times 10^{-9}$ $0.6$ $1.28\times 10^{-9}$ $1.17\times 10^{-9}$ $1.15\times 10^{-9}$ $0.8$ $3.76\times 10^{-9}$ $7.93\times 10^{-10}$ $2.71\times 10^{-10}$ $1.0$ $4.34\times 10^{-21}$ $3.78\times 10^{-21}$ $1.14\times 10^{-22}$
 $x$ $N=3$ $N=5$ $N=7$ $0$ $5.82\times 10^{-21}$ $5.93\times 10^{-22}$ $4.43\times 10^{-21}$ $0.2$ $1.01\times 10^{-9}$ $4.74\times 10^{-9}$ $2.28\times 10^{-9}$ $0.4$ $8.21\times 10^{-9}$ $8.11\times 10^{-9}$ $4.21\times 10^{-9}$ $0.6$ $1.28\times 10^{-9}$ $1.17\times 10^{-9}$ $1.15\times 10^{-9}$ $0.8$ $3.76\times 10^{-9}$ $7.93\times 10^{-10}$ $2.71\times 10^{-10}$ $1.0$ $4.34\times 10^{-21}$ $3.78\times 10^{-21}$ $1.14\times 10^{-22}$
The convergence order, the errors $L_{2}$ and $L_{\infty}$ for Example 5.1 with $T = 1$ and $N = 3$
 $\delta \tau$ $L_{\infty}$ $C_{\delta \tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.62773\times 10^{-7}$ $3.76647\times 10^{-7}$ $\frac{1}{200}$ $4.06928\times 10^{-8}$ $2.00002$ $9.41607\times 10^{-8}$ $2.00002$ $\frac{1}{400}$ $1.01732\times 10^{-8}$ $2.00000$ $2.35401\times 10^{-8}$ $2.00000$ $\frac{1}{800}$ $2.54329\times 10^{-9}$ $2.00000$ $5.88503\times 10^{-9}$ $2.00000$ $\frac{1}{1600}$ $6.35828\times 10^{-10}$ $1.99999$ $1.47127\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
 $\delta \tau$ $L_{\infty}$ $C_{\delta \tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.62773\times 10^{-7}$ $3.76647\times 10^{-7}$ $\frac{1}{200}$ $4.06928\times 10^{-8}$ $2.00002$ $9.41607\times 10^{-8}$ $2.00002$ $\frac{1}{400}$ $1.01732\times 10^{-8}$ $2.00000$ $2.35401\times 10^{-8}$ $2.00000$ $\frac{1}{800}$ $2.54329\times 10^{-9}$ $2.00000$ $5.88503\times 10^{-9}$ $2.00000$ $\frac{1}{1600}$ $6.35828\times 10^{-10}$ $1.99999$ $1.47127\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
The convergence order, the errors $L_{2}$ and $L_{\infty}$ for Example 5.1 with $T = 10$ and $N = 3$
 $\delta \tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.63402\times 10^{-7}$ $3.10926\times 10^{-7}$ $\frac{1}{200}$ $4.08673\times 10^{-8}$ $1.99941$ $7.77632\times 10^{-8}$ $1.99941$ $\frac{1}{400}$ $1.02179\times 10^{-8}$ $1.99985$ $1.94428\times 10^{-8}$ $1.99985$ $\frac{1}{800}$ $2.55453\times 10^{-9}$ $1.99996$ $4.86082\times 10^{-9}$ $1.99996$ $\frac{1}{1600}$ $6.38636\times 10^{-10}$ $1.99999$ $1.21521\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
 $\delta \tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.63402\times 10^{-7}$ $3.10926\times 10^{-7}$ $\frac{1}{200}$ $4.08673\times 10^{-8}$ $1.99941$ $7.77632\times 10^{-8}$ $1.99941$ $\frac{1}{400}$ $1.02179\times 10^{-8}$ $1.99985$ $1.94428\times 10^{-8}$ $1.99985$ $\frac{1}{800}$ $2.55453\times 10^{-9}$ $1.99996$ $4.86082\times 10^{-9}$ $1.99996$ $\frac{1}{1600}$ $6.38636\times 10^{-10}$ $1.99999$ $1.21521\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
The convergence order, the errors $L_{2}$ and $L_{\infty}$ for Example 5.2 with $N = 7$ at $T = 1$
 $\delta\tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.71816\times 10^{-6}$ $3.73349\times 10^{-6}$ $\frac{1}{200}$ $4.29538\times 10^{-7}$ $2.00000$ $9.33372\times 10^{-7}$ $2.00000$ $\frac{1}{400}$ $1.07384\times 10^{-7}$ $2.00000$ $2.33343\times 10^{-7}$ $2.00000$ $\frac{1}{800}$ $2.68460\times 10^{-8}$ $2.00000$ $5.83360\times 10^{-8}$ $2.00000$ $\frac{1}{1600}$ $6.71143\times 10^{-9}$ $2.00002$ $1.45842\times 10^{-8}$ $1.99998$ $\mathrm{TCO}$ $2$ $2$
 $\delta\tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.71816\times 10^{-6}$ $3.73349\times 10^{-6}$ $\frac{1}{200}$ $4.29538\times 10^{-7}$ $2.00000$ $9.33372\times 10^{-7}$ $2.00000$ $\frac{1}{400}$ $1.07384\times 10^{-7}$ $2.00000$ $2.33343\times 10^{-7}$ $2.00000$ $\frac{1}{800}$ $2.68460\times 10^{-8}$ $2.00000$ $5.83360\times 10^{-8}$ $2.00000$ $\frac{1}{1600}$ $6.71143\times 10^{-9}$ $2.00002$ $1.45842\times 10^{-8}$ $1.99998$ $\mathrm{TCO}$ $2$ $2$
The comparison of maximum error of our proposed method and [32] for Example 5.2, at $T = 1$
 Max error-CN [32] Max error-ext CN [32] the present method with N=3 $6.84895\times 10^{-4}$ $2.82750 \times 10^{-5}$ $9.95930\times 10^{-8}$
 Max error-CN [32] Max error-ext CN [32] the present method with N=3 $6.84895\times 10^{-4}$ $2.82750 \times 10^{-5}$ $9.95930\times 10^{-8}$
 [1] Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 [2] Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073 [3] Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025 [4] Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 [5] Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086 [6] Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031 [7] Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 [8] Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091 [9] Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030 [10] Assia Boubidi, Sihem Kechida, Hicham Tebbikh. Analytical study of resonance regions for second kind commensurate fractional systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3579-3594. doi: 10.3934/dcdsb.2020247 [11] Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $C^{1}$ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 [12] Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 [13] Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013 [14] A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 [15] Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 [16] Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005 [17] Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 [18] Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080 [19] Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 [20] Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables