doi: 10.3934/dcdss.2020403

Interpolation of exponential-type functions on a uniform grid by shifts of a basis function

1. 

Department of Mathematics, University of Leicester, Leicester, UK

2. 

Department of Mathematics, Missouri State University, USA

3. 

Department of Mathematics, Çankaya University, Ankara, Turkey

* Corresponding author: Alexander Kushpel

Dedicated to the memory of Ward Cheney

Received  December 2019 Published  June 2020

Fund Project: The first author was supported by EPSRC Grant EP/H020071/1, the University of Leicester via study and Missouri State University through a generous travel grant

In this paper, we present a new approach to solving the problem of interpolating a continuous function at $ (n+1) $ equally-spaced points in the interval $ [0, 1] $, using shifts of a kernel on the $ (1/n) $-spaced infinite grid. The archetypal example here is approximation using shifts of a Gaussian kernel. We present new results concerning interpolation of functions of exponential type, in particular, polynomials on the integer grid as a step en route to solve the general interpolation problem. For the Gaussian kernel we introduce a new class of polynomials, closely related to the probabilistic Hermite polynomials and show that evaluations of the polynomials at the integer points provide the coefficients of the interpolants. Finally we give a closed formula for the Gaussian interpolant of a continuous function on a uniform grid in the unit interval (assuming knowledge of the discrete moments of the Gaussian).

Citation: Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020403
References:
[1]

M. Abramowitz and I. A. Stegun, Orthogonal Polynomials, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972,771–802. Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.  Google Scholar

[3]

B. J. C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory, 87 (1996), 36-59.  doi: 10.1006/jath.1996.0091.  Google Scholar

[4]

C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx., 3 (1987), 199-208.  doi: 10.1007/BF01890564.  Google Scholar

[5]

E. CarneiroF. Littmann and J. D. Vaaler, Gaussian subordination for the Beurling-Selberg extremal problem, Trans. Amer. Math. Soc., 365 (2013), 3493-3534.  doi: 10.1090/S0002-9947-2013-05716-9.  Google Scholar

[6]

E. Carneiro and J. D. Vaaler, Some extremal functions in Fourier analysis. II, Trans. Amer. Math. Soc., 362 (2010), 5803-5843.  doi: 10.1090/S0002-9947-2010-04886-X.  Google Scholar

[7]

D. Chen and W. Cheney, Lagrange polynomial interpolation, in Approximation Theory XII, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2008, 60–76.  Google Scholar

[8]

E. W. Cheney and X. Sun, Interpolation on spheres by positive definite functions, in Approximation Theory, Monogr. Textbooks Pure Appl. Math., 212, Dekker, New York, 1998,141–156.  Google Scholar

[9]

W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl., 52/53 (1983), 217-234.  doi: 10.1016/0024-3795(83)80015-9.  Google Scholar

[10]

G. Fix and G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Studies in Appl. Math., 48 (1969), 265-273.  doi: 10.1002/sapm1969483265.  Google Scholar

[11]

B. FornbergE. Larsson and N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33 (2011), 869-892.  doi: 10.1137/09076756X.  Google Scholar

[12]

E. H. GeorgoulisJ. Levesley and F. Subhan, Multilevel sparse kernel-based interpolation, SIAM J. Sci. Comput., 35 (2013), 815-831.  doi: 10.1137/110859610.  Google Scholar

[13]

S. M. GomesA. K. KushpelJ. Levesley and D. L. Ragozin, Interpolation on the torus using sk-splines with number-theoretic knots, J. Approx. Theory, 98 (1999), 56-71.  doi: 10.1006/jath.1998.3278.  Google Scholar

[14]

M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1992,263–281.  Google Scholar

[15]

K. Hamm, Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions, J. Approx. Theory, 189 (2015), 101-122.  doi: 10.1016/j.jat.2014.10.011.  Google Scholar

[16]

T. HangelbroekW. MadychF. Narcowich and J. D. Ward, Cardinal interpolation with Gaussian kernels, J. Fourier Anal. Appl., 18 (2012), 67-86.  doi: 10.1007/s00041-011-9185-2.  Google Scholar

[17]

S. Hubbert and J. Levesley, Convergence of multilevel stationary Gaussian convolution, in Numerical Mathematics and Advanced Applications, Lect. Notes Comput. Sci. Eng., 126, Springer, Cham, 2019, 83–92. doi: 10.1007/978-3-319-96415-7_5.  Google Scholar

[18]

Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968.  Google Scholar

[19]

A. K. Kushpel, Sharp estimates for the widths of convolution classes, Math. USSR-Izv., 33 (1989), 631-649.  doi: 10.1070/IM1989v033n03ABEH000862.  Google Scholar

[20]

A. K. Kushpel, Estimates of the diameters convolution classes in the spaces C and L, Ukrain. Math. J., 41 (1989), 919-924.  doi: 10.1007/BF01058308.  Google Scholar

[21]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. I, Int. J. Pure Appl. Math., 45 (2008), 87-101.   Google Scholar

[22]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. II, Int. J. Pure Appl. Math., 45 (2008), 103-119.   Google Scholar

[23]

A. K. Kushpel, A method of inversion of Fourier transforms and its applications, Int. J. of Diff. Equations Appl., 18 (2019), 25-29.   Google Scholar

[24]

J. Levesley and A. K. Kushpel, Generalised $sk$-spline interpolation on compact abelian groups, J. Approx. Theory, 97 (1999), 311-333.  doi: 10.1006/jath.1997.3267.  Google Scholar

[25]

W. A. Light and E. W. Cheney, Interpolation by periodic radial basis functions, J. Math. Anal. Appl., 168 (1992), 111-130.  doi: 10.1016/0022-247X(92)90193-H.  Google Scholar

[26]

W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), 94-114.  doi: 10.1016/0021-9045(92)90058-V.  Google Scholar

[27]

F. J. NarcowichJ. D. Ward and H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx., 24 (2006), 175-186.  doi: 10.1007/s00365-005-0624-7.  Google Scholar

[28]

F. J. NarcowichX. SunJ. D. Ward and H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math., 7 (2007), 369-390.  doi: 10.1007/s10208-005-0197-7.  Google Scholar

[29]

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965.  Google Scholar

[30]

S. D. Riemenschneider and N. Sivakumar, On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants, J. Anal. Math., 79 (1999), 33-61.  doi: 10.1007/BF02788236.  Google Scholar

[31]

S. D. Riemenschneider and N. Sivakumar, Cardinal interpolation by Gaussian functions: A survey, J. Anal., 8 (2000), 157-178.   Google Scholar

[32]

A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5 (1989), 297-308.  doi: 10.1007/BF01889611.  Google Scholar

[33]

A. Ron, Introduction to shift-invariant spaces. Linear independence, in Multivariate Approximation and Applications, Cambridge Univ. Press, Cambridge, 2001, 112–151. doi: 10.1017/CBO9780511569616.006.  Google Scholar

[34]

L. A. Rubel, Necessary and sufficient conditions for Carlson's theorem on entire functions, Trans. Amer. Math. Soc., 83 (1956), 417-429.  doi: 10.2307/1992882.  Google Scholar

[35]

I. J. Schoenberg, Cardinal Spline Interpolation, Conference Board of the Mathematical Sciences Regional Regional Conference Series in Applied Mathematics, 12, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973. doi: 10.1137/1.9781611970555.  Google Scholar

[36]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[37]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971. doi: 10.1515/9781400883899.  Google Scholar

[38]

Y. Xu and E. W. Cheney, Interpolation by periodic radial functions. Advances in the theory and applications of radial basis functions, Comput. Math. Appl., 24 (1992), 201-215.  doi: 10.1016/0898-1221(92)90181-G.  Google Scholar

[39]

K. Yosida, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York; Springer-Verlag, Berlin, 1965. doi: 10.1007/978-3-662-25762-3.  Google Scholar

[40]

A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, FL, 1993.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Orthogonal Polynomials, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972,771–802. Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.  Google Scholar

[3]

B. J. C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory, 87 (1996), 36-59.  doi: 10.1006/jath.1996.0091.  Google Scholar

[4]

C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx., 3 (1987), 199-208.  doi: 10.1007/BF01890564.  Google Scholar

[5]

E. CarneiroF. Littmann and J. D. Vaaler, Gaussian subordination for the Beurling-Selberg extremal problem, Trans. Amer. Math. Soc., 365 (2013), 3493-3534.  doi: 10.1090/S0002-9947-2013-05716-9.  Google Scholar

[6]

E. Carneiro and J. D. Vaaler, Some extremal functions in Fourier analysis. II, Trans. Amer. Math. Soc., 362 (2010), 5803-5843.  doi: 10.1090/S0002-9947-2010-04886-X.  Google Scholar

[7]

D. Chen and W. Cheney, Lagrange polynomial interpolation, in Approximation Theory XII, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2008, 60–76.  Google Scholar

[8]

E. W. Cheney and X. Sun, Interpolation on spheres by positive definite functions, in Approximation Theory, Monogr. Textbooks Pure Appl. Math., 212, Dekker, New York, 1998,141–156.  Google Scholar

[9]

W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl., 52/53 (1983), 217-234.  doi: 10.1016/0024-3795(83)80015-9.  Google Scholar

[10]

G. Fix and G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Studies in Appl. Math., 48 (1969), 265-273.  doi: 10.1002/sapm1969483265.  Google Scholar

[11]

B. FornbergE. Larsson and N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33 (2011), 869-892.  doi: 10.1137/09076756X.  Google Scholar

[12]

E. H. GeorgoulisJ. Levesley and F. Subhan, Multilevel sparse kernel-based interpolation, SIAM J. Sci. Comput., 35 (2013), 815-831.  doi: 10.1137/110859610.  Google Scholar

[13]

S. M. GomesA. K. KushpelJ. Levesley and D. L. Ragozin, Interpolation on the torus using sk-splines with number-theoretic knots, J. Approx. Theory, 98 (1999), 56-71.  doi: 10.1006/jath.1998.3278.  Google Scholar

[14]

M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1992,263–281.  Google Scholar

[15]

K. Hamm, Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions, J. Approx. Theory, 189 (2015), 101-122.  doi: 10.1016/j.jat.2014.10.011.  Google Scholar

[16]

T. HangelbroekW. MadychF. Narcowich and J. D. Ward, Cardinal interpolation with Gaussian kernels, J. Fourier Anal. Appl., 18 (2012), 67-86.  doi: 10.1007/s00041-011-9185-2.  Google Scholar

[17]

S. Hubbert and J. Levesley, Convergence of multilevel stationary Gaussian convolution, in Numerical Mathematics and Advanced Applications, Lect. Notes Comput. Sci. Eng., 126, Springer, Cham, 2019, 83–92. doi: 10.1007/978-3-319-96415-7_5.  Google Scholar

[18]

Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968.  Google Scholar

[19]

A. K. Kushpel, Sharp estimates for the widths of convolution classes, Math. USSR-Izv., 33 (1989), 631-649.  doi: 10.1070/IM1989v033n03ABEH000862.  Google Scholar

[20]

A. K. Kushpel, Estimates of the diameters convolution classes in the spaces C and L, Ukrain. Math. J., 41 (1989), 919-924.  doi: 10.1007/BF01058308.  Google Scholar

[21]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. I, Int. J. Pure Appl. Math., 45 (2008), 87-101.   Google Scholar

[22]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. II, Int. J. Pure Appl. Math., 45 (2008), 103-119.   Google Scholar

[23]

A. K. Kushpel, A method of inversion of Fourier transforms and its applications, Int. J. of Diff. Equations Appl., 18 (2019), 25-29.   Google Scholar

[24]

J. Levesley and A. K. Kushpel, Generalised $sk$-spline interpolation on compact abelian groups, J. Approx. Theory, 97 (1999), 311-333.  doi: 10.1006/jath.1997.3267.  Google Scholar

[25]

W. A. Light and E. W. Cheney, Interpolation by periodic radial basis functions, J. Math. Anal. Appl., 168 (1992), 111-130.  doi: 10.1016/0022-247X(92)90193-H.  Google Scholar

[26]

W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), 94-114.  doi: 10.1016/0021-9045(92)90058-V.  Google Scholar

[27]

F. J. NarcowichJ. D. Ward and H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx., 24 (2006), 175-186.  doi: 10.1007/s00365-005-0624-7.  Google Scholar

[28]

F. J. NarcowichX. SunJ. D. Ward and H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math., 7 (2007), 369-390.  doi: 10.1007/s10208-005-0197-7.  Google Scholar

[29]

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965.  Google Scholar

[30]

S. D. Riemenschneider and N. Sivakumar, On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants, J. Anal. Math., 79 (1999), 33-61.  doi: 10.1007/BF02788236.  Google Scholar

[31]

S. D. Riemenschneider and N. Sivakumar, Cardinal interpolation by Gaussian functions: A survey, J. Anal., 8 (2000), 157-178.   Google Scholar

[32]

A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5 (1989), 297-308.  doi: 10.1007/BF01889611.  Google Scholar

[33]

A. Ron, Introduction to shift-invariant spaces. Linear independence, in Multivariate Approximation and Applications, Cambridge Univ. Press, Cambridge, 2001, 112–151. doi: 10.1017/CBO9780511569616.006.  Google Scholar

[34]

L. A. Rubel, Necessary and sufficient conditions for Carlson's theorem on entire functions, Trans. Amer. Math. Soc., 83 (1956), 417-429.  doi: 10.2307/1992882.  Google Scholar

[35]

I. J. Schoenberg, Cardinal Spline Interpolation, Conference Board of the Mathematical Sciences Regional Regional Conference Series in Applied Mathematics, 12, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973. doi: 10.1137/1.9781611970555.  Google Scholar

[36]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[37]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971. doi: 10.1515/9781400883899.  Google Scholar

[38]

Y. Xu and E. W. Cheney, Interpolation by periodic radial functions. Advances in the theory and applications of radial basis functions, Comput. Math. Appl., 24 (1992), 201-215.  doi: 10.1016/0898-1221(92)90181-G.  Google Scholar

[39]

K. Yosida, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York; Springer-Verlag, Berlin, 1965. doi: 10.1007/978-3-662-25762-3.  Google Scholar

[40]

A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, FL, 1993.  Google Scholar

[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[3]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[8]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[9]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021005

[10]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[11]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[15]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[16]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[17]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[18]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (57)
  • HTML views (250)
  • Cited by (0)

[Back to Top]