• Previous Article
    Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances
  • DCDS-S Home
  • This Issue
  • Next Article
    Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media
doi: 10.3934/dcdss.2020403

Interpolation of exponential-type functions on a uniform grid by shifts of a basis function

1. 

Department of Mathematics, University of Leicester, Leicester, UK

2. 

Department of Mathematics, Missouri State University, USA

3. 

Department of Mathematics, Çankaya University, Ankara, Turkey

* Corresponding author: Alexander Kushpel

Dedicated to the memory of Ward Cheney

Received  December 2019 Published  June 2020

Fund Project: The first author was supported by EPSRC Grant EP/H020071/1, the University of Leicester via study and Missouri State University through a generous travel grant

In this paper, we present a new approach to solving the problem of interpolating a continuous function at $ (n+1) $ equally-spaced points in the interval $ [0, 1] $, using shifts of a kernel on the $ (1/n) $-spaced infinite grid. The archetypal example here is approximation using shifts of a Gaussian kernel. We present new results concerning interpolation of functions of exponential type, in particular, polynomials on the integer grid as a step en route to solve the general interpolation problem. For the Gaussian kernel we introduce a new class of polynomials, closely related to the probabilistic Hermite polynomials and show that evaluations of the polynomials at the integer points provide the coefficients of the interpolants. Finally we give a closed formula for the Gaussian interpolant of a continuous function on a uniform grid in the unit interval (assuming knowledge of the discrete moments of the Gaussian).

Citation: Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020403
References:
[1]

M. Abramowitz and I. A. Stegun, Orthogonal Polynomials, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972,771–802. Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.  Google Scholar

[3]

B. J. C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory, 87 (1996), 36-59.  doi: 10.1006/jath.1996.0091.  Google Scholar

[4]

C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx., 3 (1987), 199-208.  doi: 10.1007/BF01890564.  Google Scholar

[5]

E. CarneiroF. Littmann and J. D. Vaaler, Gaussian subordination for the Beurling-Selberg extremal problem, Trans. Amer. Math. Soc., 365 (2013), 3493-3534.  doi: 10.1090/S0002-9947-2013-05716-9.  Google Scholar

[6]

E. Carneiro and J. D. Vaaler, Some extremal functions in Fourier analysis. II, Trans. Amer. Math. Soc., 362 (2010), 5803-5843.  doi: 10.1090/S0002-9947-2010-04886-X.  Google Scholar

[7]

D. Chen and W. Cheney, Lagrange polynomial interpolation, in Approximation Theory XII, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2008, 60–76.  Google Scholar

[8]

E. W. Cheney and X. Sun, Interpolation on spheres by positive definite functions, in Approximation Theory, Monogr. Textbooks Pure Appl. Math., 212, Dekker, New York, 1998,141–156.  Google Scholar

[9]

W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl., 52/53 (1983), 217-234.  doi: 10.1016/0024-3795(83)80015-9.  Google Scholar

[10]

G. Fix and G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Studies in Appl. Math., 48 (1969), 265-273.  doi: 10.1002/sapm1969483265.  Google Scholar

[11]

B. FornbergE. Larsson and N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33 (2011), 869-892.  doi: 10.1137/09076756X.  Google Scholar

[12]

E. H. GeorgoulisJ. Levesley and F. Subhan, Multilevel sparse kernel-based interpolation, SIAM J. Sci. Comput., 35 (2013), 815-831.  doi: 10.1137/110859610.  Google Scholar

[13]

S. M. GomesA. K. KushpelJ. Levesley and D. L. Ragozin, Interpolation on the torus using sk-splines with number-theoretic knots, J. Approx. Theory, 98 (1999), 56-71.  doi: 10.1006/jath.1998.3278.  Google Scholar

[14]

M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1992,263–281.  Google Scholar

[15]

K. Hamm, Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions, J. Approx. Theory, 189 (2015), 101-122.  doi: 10.1016/j.jat.2014.10.011.  Google Scholar

[16]

T. HangelbroekW. MadychF. Narcowich and J. D. Ward, Cardinal interpolation with Gaussian kernels, J. Fourier Anal. Appl., 18 (2012), 67-86.  doi: 10.1007/s00041-011-9185-2.  Google Scholar

[17]

S. Hubbert and J. Levesley, Convergence of multilevel stationary Gaussian convolution, in Numerical Mathematics and Advanced Applications, Lect. Notes Comput. Sci. Eng., 126, Springer, Cham, 2019, 83–92. doi: 10.1007/978-3-319-96415-7_5.  Google Scholar

[18]

Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968.  Google Scholar

[19]

A. K. Kushpel, Sharp estimates for the widths of convolution classes, Math. USSR-Izv., 33 (1989), 631-649.  doi: 10.1070/IM1989v033n03ABEH000862.  Google Scholar

[20]

A. K. Kushpel, Estimates of the diameters convolution classes in the spaces C and L, Ukrain. Math. J., 41 (1989), 919-924.  doi: 10.1007/BF01058308.  Google Scholar

[21]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. I, Int. J. Pure Appl. Math., 45 (2008), 87-101.   Google Scholar

[22]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. II, Int. J. Pure Appl. Math., 45 (2008), 103-119.   Google Scholar

[23]

A. K. Kushpel, A method of inversion of Fourier transforms and its applications, Int. J. of Diff. Equations Appl., 18 (2019), 25-29.   Google Scholar

[24]

J. Levesley and A. K. Kushpel, Generalised $sk$-spline interpolation on compact abelian groups, J. Approx. Theory, 97 (1999), 311-333.  doi: 10.1006/jath.1997.3267.  Google Scholar

[25]

W. A. Light and E. W. Cheney, Interpolation by periodic radial basis functions, J. Math. Anal. Appl., 168 (1992), 111-130.  doi: 10.1016/0022-247X(92)90193-H.  Google Scholar

[26]

W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), 94-114.  doi: 10.1016/0021-9045(92)90058-V.  Google Scholar

[27]

F. J. NarcowichJ. D. Ward and H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx., 24 (2006), 175-186.  doi: 10.1007/s00365-005-0624-7.  Google Scholar

[28]

F. J. NarcowichX. SunJ. D. Ward and H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math., 7 (2007), 369-390.  doi: 10.1007/s10208-005-0197-7.  Google Scholar

[29]

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965.  Google Scholar

[30]

S. D. Riemenschneider and N. Sivakumar, On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants, J. Anal. Math., 79 (1999), 33-61.  doi: 10.1007/BF02788236.  Google Scholar

[31]

S. D. Riemenschneider and N. Sivakumar, Cardinal interpolation by Gaussian functions: A survey, J. Anal., 8 (2000), 157-178.   Google Scholar

[32]

A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5 (1989), 297-308.  doi: 10.1007/BF01889611.  Google Scholar

[33]

A. Ron, Introduction to shift-invariant spaces. Linear independence, in Multivariate Approximation and Applications, Cambridge Univ. Press, Cambridge, 2001, 112–151. doi: 10.1017/CBO9780511569616.006.  Google Scholar

[34]

L. A. Rubel, Necessary and sufficient conditions for Carlson's theorem on entire functions, Trans. Amer. Math. Soc., 83 (1956), 417-429.  doi: 10.2307/1992882.  Google Scholar

[35]

I. J. Schoenberg, Cardinal Spline Interpolation, Conference Board of the Mathematical Sciences Regional Regional Conference Series in Applied Mathematics, 12, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973. doi: 10.1137/1.9781611970555.  Google Scholar

[36]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[37]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971. doi: 10.1515/9781400883899.  Google Scholar

[38]

Y. Xu and E. W. Cheney, Interpolation by periodic radial functions. Advances in the theory and applications of radial basis functions, Comput. Math. Appl., 24 (1992), 201-215.  doi: 10.1016/0898-1221(92)90181-G.  Google Scholar

[39]

K. Yosida, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York; Springer-Verlag, Berlin, 1965. doi: 10.1007/978-3-662-25762-3.  Google Scholar

[40]

A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, FL, 1993.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Orthogonal Polynomials, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972,771–802. Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.  Google Scholar

[3]

B. J. C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory, 87 (1996), 36-59.  doi: 10.1006/jath.1996.0091.  Google Scholar

[4]

C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx., 3 (1987), 199-208.  doi: 10.1007/BF01890564.  Google Scholar

[5]

E. CarneiroF. Littmann and J. D. Vaaler, Gaussian subordination for the Beurling-Selberg extremal problem, Trans. Amer. Math. Soc., 365 (2013), 3493-3534.  doi: 10.1090/S0002-9947-2013-05716-9.  Google Scholar

[6]

E. Carneiro and J. D. Vaaler, Some extremal functions in Fourier analysis. II, Trans. Amer. Math. Soc., 362 (2010), 5803-5843.  doi: 10.1090/S0002-9947-2010-04886-X.  Google Scholar

[7]

D. Chen and W. Cheney, Lagrange polynomial interpolation, in Approximation Theory XII, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2008, 60–76.  Google Scholar

[8]

E. W. Cheney and X. Sun, Interpolation on spheres by positive definite functions, in Approximation Theory, Monogr. Textbooks Pure Appl. Math., 212, Dekker, New York, 1998,141–156.  Google Scholar

[9]

W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl., 52/53 (1983), 217-234.  doi: 10.1016/0024-3795(83)80015-9.  Google Scholar

[10]

G. Fix and G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Studies in Appl. Math., 48 (1969), 265-273.  doi: 10.1002/sapm1969483265.  Google Scholar

[11]

B. FornbergE. Larsson and N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33 (2011), 869-892.  doi: 10.1137/09076756X.  Google Scholar

[12]

E. H. GeorgoulisJ. Levesley and F. Subhan, Multilevel sparse kernel-based interpolation, SIAM J. Sci. Comput., 35 (2013), 815-831.  doi: 10.1137/110859610.  Google Scholar

[13]

S. M. GomesA. K. KushpelJ. Levesley and D. L. Ragozin, Interpolation on the torus using sk-splines with number-theoretic knots, J. Approx. Theory, 98 (1999), 56-71.  doi: 10.1006/jath.1998.3278.  Google Scholar

[14]

M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1992,263–281.  Google Scholar

[15]

K. Hamm, Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions, J. Approx. Theory, 189 (2015), 101-122.  doi: 10.1016/j.jat.2014.10.011.  Google Scholar

[16]

T. HangelbroekW. MadychF. Narcowich and J. D. Ward, Cardinal interpolation with Gaussian kernels, J. Fourier Anal. Appl., 18 (2012), 67-86.  doi: 10.1007/s00041-011-9185-2.  Google Scholar

[17]

S. Hubbert and J. Levesley, Convergence of multilevel stationary Gaussian convolution, in Numerical Mathematics and Advanced Applications, Lect. Notes Comput. Sci. Eng., 126, Springer, Cham, 2019, 83–92. doi: 10.1007/978-3-319-96415-7_5.  Google Scholar

[18]

Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968.  Google Scholar

[19]

A. K. Kushpel, Sharp estimates for the widths of convolution classes, Math. USSR-Izv., 33 (1989), 631-649.  doi: 10.1070/IM1989v033n03ABEH000862.  Google Scholar

[20]

A. K. Kushpel, Estimates of the diameters convolution classes in the spaces C and L, Ukrain. Math. J., 41 (1989), 919-924.  doi: 10.1007/BF01058308.  Google Scholar

[21]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. I, Int. J. Pure Appl. Math., 45 (2008), 87-101.   Google Scholar

[22]

A. K. Kushpel, Convergence of $sk$-splines in $L_q$. II, Int. J. Pure Appl. Math., 45 (2008), 103-119.   Google Scholar

[23]

A. K. Kushpel, A method of inversion of Fourier transforms and its applications, Int. J. of Diff. Equations Appl., 18 (2019), 25-29.   Google Scholar

[24]

J. Levesley and A. K. Kushpel, Generalised $sk$-spline interpolation on compact abelian groups, J. Approx. Theory, 97 (1999), 311-333.  doi: 10.1006/jath.1997.3267.  Google Scholar

[25]

W. A. Light and E. W. Cheney, Interpolation by periodic radial basis functions, J. Math. Anal. Appl., 168 (1992), 111-130.  doi: 10.1016/0022-247X(92)90193-H.  Google Scholar

[26]

W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), 94-114.  doi: 10.1016/0021-9045(92)90058-V.  Google Scholar

[27]

F. J. NarcowichJ. D. Ward and H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx., 24 (2006), 175-186.  doi: 10.1007/s00365-005-0624-7.  Google Scholar

[28]

F. J. NarcowichX. SunJ. D. Ward and H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math., 7 (2007), 369-390.  doi: 10.1007/s10208-005-0197-7.  Google Scholar

[29]

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965.  Google Scholar

[30]

S. D. Riemenschneider and N. Sivakumar, On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants, J. Anal. Math., 79 (1999), 33-61.  doi: 10.1007/BF02788236.  Google Scholar

[31]

S. D. Riemenschneider and N. Sivakumar, Cardinal interpolation by Gaussian functions: A survey, J. Anal., 8 (2000), 157-178.   Google Scholar

[32]

A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5 (1989), 297-308.  doi: 10.1007/BF01889611.  Google Scholar

[33]

A. Ron, Introduction to shift-invariant spaces. Linear independence, in Multivariate Approximation and Applications, Cambridge Univ. Press, Cambridge, 2001, 112–151. doi: 10.1017/CBO9780511569616.006.  Google Scholar

[34]

L. A. Rubel, Necessary and sufficient conditions for Carlson's theorem on entire functions, Trans. Amer. Math. Soc., 83 (1956), 417-429.  doi: 10.2307/1992882.  Google Scholar

[35]

I. J. Schoenberg, Cardinal Spline Interpolation, Conference Board of the Mathematical Sciences Regional Regional Conference Series in Applied Mathematics, 12, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973. doi: 10.1137/1.9781611970555.  Google Scholar

[36]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[37]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971. doi: 10.1515/9781400883899.  Google Scholar

[38]

Y. Xu and E. W. Cheney, Interpolation by periodic radial functions. Advances in the theory and applications of radial basis functions, Comput. Math. Appl., 24 (1992), 201-215.  doi: 10.1016/0898-1221(92)90181-G.  Google Scholar

[39]

K. Yosida, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York; Springer-Verlag, Berlin, 1965. doi: 10.1007/978-3-662-25762-3.  Google Scholar

[40]

A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, FL, 1993.  Google Scholar

[1]

Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164

[2]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[3]

Seung Jun Chang, Jae Gil Choi. Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Communications on Pure & Applied Analysis, 2020, 19 (1) : 371-389. doi: 10.3934/cpaa.2020019

[4]

Shengxin Zhu. Summation of Gaussian shifts as Jacobi's third Theta function. Mathematical Foundations of Computing, 2020, 3 (3) : 157-163. doi: 10.3934/mfc.2020015

[5]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[6]

Bai-Ni Guo, Feng Qi. Properties and applications of a function involving exponential functions. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1231-1249. doi: 10.3934/cpaa.2009.8.1231

[7]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[8]

Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008

[9]

Jianxun Fu, Song Zhang. A new type of non-landing exponential rays. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4179-4196. doi: 10.3934/dcds.2020177

[10]

Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009

[11]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[12]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[13]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[14]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[15]

Steve Hofmann, Dorina Mitrea, Marius Mitrea, Andrew J. Morris. Square function estimates in spaces of homogeneous type and on uniformly rectifiable Euclidean sets. Electronic Research Announcements, 2014, 21: 8-18. doi: 10.3934/era.2014.21.8

[16]

A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003

[17]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[18]

Wei Mao, Liangjian Hu, Xuerong Mao. Razumikhin-type theorems on polynomial stability of hybrid stochastic systems with pantograph delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3217-3232. doi: 10.3934/dcdsb.2020059

[19]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047

[20]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (16)
  • HTML views (44)
  • Cited by (0)

[Back to Top]