
-
Previous Article
Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition
- DCDS-S Home
- This Issue
-
Next Article
Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves
Fast reaction limit of reaction-diffusion systems
Faculty of Advanced Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan |
Singular limit problems of reaction-diffusion systems have been studied in cases where the effects of the reaction terms are very large compared with those of the other terms. Such problems appear in literature in various fields such as chemistry, ecology, biology, geology and approximation theory. In this paper, we deal with the singular limit of a general reaction-diffusion system including many problems in the literature. We formulate the problem, derive the limit equation and establish a rigorous mathematical theory.
References:
[1] |
D. Aronson, M. G. Crandall and L. A. Peletier,
Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal, 6 (1982), 1001-1022.
doi: 10.1016/0362-546X(82)90072-4. |
[2] |
D. Bothe and D. Hilhorst,
A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.
doi: 10.1016/S0022-247X(03)00457-8. |
[3] |
N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst,
A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638.
doi: 10.1016/j.nonrwa.2007.10.019. |
[4] |
M. Conti, S. Terracini and G. Verzini,
Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math, 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[5] |
J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
![]() |
[6] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier,
Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660. |
[7] |
J. Eliaš, M. H. Kabir and M. Mimura,
On the well-posedness of a dispersal model for farmers and hunter-gatherers in the neolithic transition, Math. Models Methods Appl. Sci, 28 (2018), 195-222.
doi: 10.1142/S0218202518500069. |
[8] |
L. C. Evans,
A convergence theorem for a chemical diffusion-reaction system, Houston J. Math., 6 (1980), 259-267.
|
[9] |
R. Eymard, D. Hilhorst, H. Murakawa and M. Olech,
Numerical approximation of a reaction-diffusion system with fast reversible reaction, Chinese Annals of Mathematics B, 31 (2010), 631-654.
doi: 10.1007/s11401-010-0604-5. |
[10] |
R. Eymard, D. Hilhorst, R. van der Hout and L. A. Peletier, A reaction-diffusion system approximation of a one-phase Stefan problem, Optimal Control and Partial Differential Equations, IOS, Amsterdam, (2001), 156–170. |
[11] |
D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya,
A competition-diffusion system approximation to the classical two-phase stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.
doi: 10.1007/BF03168569. |
[12] |
D. Hilhorst, J. R. King and M. Röger,
Mathematical analysis of a model describing the invasion of bacteria in burn wounds, Nonlinear Anal., 66 (2007), 1118-1140.
doi: 10.1016/j.na.2006.01.009. |
[13] |
D. Hilhorst and H. Murakawa,
Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium, Netw. Heterog. Media, 9 (2014), 669-682.
doi: 10.3934/nhm.2014.9.669. |
[14] |
M. Iida, H. Monobe, H. Murakawa and H. Ninomiya,
Vanishing, moving and immovable interfaces in fast reaction limits, J. Differential Equations, 263 (2017), 2715-2735.
doi: 10.1016/j.jde.2017.04.009. |
[15] |
M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system, Recent Advances on Elliptic and Parabolic Issues, eds. M. Chipot and H. Ninomiya, World Scientific, (2006), 145–164. Google Scholar |
[16] |
M. Iida, H. Ninomiya and H. Yamamoto,
A review on reaction-diffusion approximation, J. Elliptic Parabol. Equ., 4 (2018), 565-600.
doi: 10.1007/s41808-018-0029-y. |
[17] |
J. W. Jerome, Approximation of Nonlinear Evolution Systems, Academic Press, New York, 1983.
![]() |
[18] |
S. Jimbo and Y. Morita,
Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.
doi: 10.1016/j.jde.2013.05.021. |
[19] |
P. Knabner, Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien, Verlag Peter Lang, Frankfurt, 1991. |
[20] |
Y. Morita and T. Ogawa,
Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.
doi: 10.1088/0951-7715/23/6/007. |
[21] |
A. Moussa, B. Perthame and D. Salort,
Backward parabolicity, cross-diffusion and turing instability, J. Nonlinear Sci., 29 (2019), 139-162.
doi: 10.1007/s00332-018-9480-z. |
[22] |
H. Murakawa,
Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.
doi: 10.1088/0951-7715/20/10/003. |
[23] |
H. Murakawa,
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem, Nonlinear Anal., 69 (2008), 3512-3524.
doi: 10.1016/j.na.2007.09.038. |
[24] |
H. Murakawa,
A relation between cross-diffusion and reaction-diffusion, Discrete Contin. Dyn. Syst. S, 5 (2012), 147-158.
doi: 10.3934/dcdss.2012.5.147. |
[25] |
H. Murakawa,
A linear scheme to approximate nonlinear cross-diffusion systems, Math. Mod. Numer. Anal., 45 (2011), 1141-1161.
doi: 10.1051/m2an/2011010. |
[26] |
H. Murakawa,
An efficient linear scheme to approximate nonlinear diffusion problems, Jpn. J. Ind. Appl. Math., 35 (2018), 71-101.
doi: 10.1007/s13160-017-0279-3. |
[27] |
H. Murakawa and H. Ninomiya,
Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., 379 (2011), 150-170.
doi: 10.1016/j.jmaa.2010.12.040. |
[28] |
C. Verdi,
Numerical aspects of parabolic free boundary and hysteresis problems, Lecture Notes in Mathematics, 1584 (1994), 213-284.
doi: 10.1007/BFb0073398. |
[29] |
A. Visintin,
Models of phase relaxation, Differential and Integral Equations, 14 (2001), 1469-1486.
|
show all references
References:
[1] |
D. Aronson, M. G. Crandall and L. A. Peletier,
Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal, 6 (1982), 1001-1022.
doi: 10.1016/0362-546X(82)90072-4. |
[2] |
D. Bothe and D. Hilhorst,
A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.
doi: 10.1016/S0022-247X(03)00457-8. |
[3] |
N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst,
A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638.
doi: 10.1016/j.nonrwa.2007.10.019. |
[4] |
M. Conti, S. Terracini and G. Verzini,
Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math, 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[5] |
J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
![]() |
[6] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier,
Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660. |
[7] |
J. Eliaš, M. H. Kabir and M. Mimura,
On the well-posedness of a dispersal model for farmers and hunter-gatherers in the neolithic transition, Math. Models Methods Appl. Sci, 28 (2018), 195-222.
doi: 10.1142/S0218202518500069. |
[8] |
L. C. Evans,
A convergence theorem for a chemical diffusion-reaction system, Houston J. Math., 6 (1980), 259-267.
|
[9] |
R. Eymard, D. Hilhorst, H. Murakawa and M. Olech,
Numerical approximation of a reaction-diffusion system with fast reversible reaction, Chinese Annals of Mathematics B, 31 (2010), 631-654.
doi: 10.1007/s11401-010-0604-5. |
[10] |
R. Eymard, D. Hilhorst, R. van der Hout and L. A. Peletier, A reaction-diffusion system approximation of a one-phase Stefan problem, Optimal Control and Partial Differential Equations, IOS, Amsterdam, (2001), 156–170. |
[11] |
D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya,
A competition-diffusion system approximation to the classical two-phase stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.
doi: 10.1007/BF03168569. |
[12] |
D. Hilhorst, J. R. King and M. Röger,
Mathematical analysis of a model describing the invasion of bacteria in burn wounds, Nonlinear Anal., 66 (2007), 1118-1140.
doi: 10.1016/j.na.2006.01.009. |
[13] |
D. Hilhorst and H. Murakawa,
Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium, Netw. Heterog. Media, 9 (2014), 669-682.
doi: 10.3934/nhm.2014.9.669. |
[14] |
M. Iida, H. Monobe, H. Murakawa and H. Ninomiya,
Vanishing, moving and immovable interfaces in fast reaction limits, J. Differential Equations, 263 (2017), 2715-2735.
doi: 10.1016/j.jde.2017.04.009. |
[15] |
M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system, Recent Advances on Elliptic and Parabolic Issues, eds. M. Chipot and H. Ninomiya, World Scientific, (2006), 145–164. Google Scholar |
[16] |
M. Iida, H. Ninomiya and H. Yamamoto,
A review on reaction-diffusion approximation, J. Elliptic Parabol. Equ., 4 (2018), 565-600.
doi: 10.1007/s41808-018-0029-y. |
[17] |
J. W. Jerome, Approximation of Nonlinear Evolution Systems, Academic Press, New York, 1983.
![]() |
[18] |
S. Jimbo and Y. Morita,
Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.
doi: 10.1016/j.jde.2013.05.021. |
[19] |
P. Knabner, Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien, Verlag Peter Lang, Frankfurt, 1991. |
[20] |
Y. Morita and T. Ogawa,
Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.
doi: 10.1088/0951-7715/23/6/007. |
[21] |
A. Moussa, B. Perthame and D. Salort,
Backward parabolicity, cross-diffusion and turing instability, J. Nonlinear Sci., 29 (2019), 139-162.
doi: 10.1007/s00332-018-9480-z. |
[22] |
H. Murakawa,
Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.
doi: 10.1088/0951-7715/20/10/003. |
[23] |
H. Murakawa,
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem, Nonlinear Anal., 69 (2008), 3512-3524.
doi: 10.1016/j.na.2007.09.038. |
[24] |
H. Murakawa,
A relation between cross-diffusion and reaction-diffusion, Discrete Contin. Dyn. Syst. S, 5 (2012), 147-158.
doi: 10.3934/dcdss.2012.5.147. |
[25] |
H. Murakawa,
A linear scheme to approximate nonlinear cross-diffusion systems, Math. Mod. Numer. Anal., 45 (2011), 1141-1161.
doi: 10.1051/m2an/2011010. |
[26] |
H. Murakawa,
An efficient linear scheme to approximate nonlinear diffusion problems, Jpn. J. Ind. Appl. Math., 35 (2018), 71-101.
doi: 10.1007/s13160-017-0279-3. |
[27] |
H. Murakawa and H. Ninomiya,
Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., 379 (2011), 150-170.
doi: 10.1016/j.jmaa.2010.12.040. |
[28] |
C. Verdi,
Numerical aspects of parabolic free boundary and hysteresis problems, Lecture Notes in Mathematics, 1584 (1994), 213-284.
doi: 10.1007/BFb0073398. |
[29] |
A. Visintin,
Models of phase relaxation, Differential and Integral Equations, 14 (2001), 1469-1486.
|

[1] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[2] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[3] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[4] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[5] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[6] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[7] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[8] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[9] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[10] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[11] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[12] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[13] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[14] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[15] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[16] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[17] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[18] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[19] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[20] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]