
-
Previous Article
Instability of free interfaces in premixed flame propagation
- DCDS-S Home
- This Issue
-
Next Article
On classes of well-posedness for quasilinear diffusion equations in the whole space
The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model
Fachbereich Mathematik, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany |
Within this paper, we consider a heterogeneous catalysis system consisting of a bulk phase $ \Omega $ (chemical reactor) and an active surface $ \Sigma = \partial \Omega $ (catalytic surface), between which chemical substances are exchanged via adsorption (transport of mass from the bulk boundary layer adjacent to the surface, leading to surface-accumulation by a transformation into an adsorbed form) and desorption (the reverse process). Quite typically, as is the purpose of catalysis, chemical reactions on the surface occur several orders of magnitude faster than, say, chemical reactions within the bulk phase, and sorption processes are often quite fast as well. Starting from the non-dimensional version, different limit models, especially for fast surface chemistry and fast sorption at the surface, are considered. For a particular model problem, questions of local-in-time existence of strong and classical solutions and positivity of solutions are addressed.
References:
[1] |
P. Acquistapace and B. Terreni, Fully nonlinear parabolic systems, Recent Advances in Nonlinear Elliptic and Parabolic Problems (Nancy, 1988), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow, 208 (1989), 97–111. |
[2] |
H. Amann,
Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.
doi: 10.1007/BF02774019. |
[3] |
H. Amann,
Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83.
doi: 10.1515/crll.1985.360.47. |
[4] |
H. Amann,
Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal., 12 (1988), 895-919.
doi: 10.1016/0362-546X(88)90073-9. |
[5] |
H. Amann,
Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.
doi: 10.1016/0022-0396(88)90156-8. |
[6] |
H. Amann,
Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219-250.
doi: 10.1007/BF01215256. |
[7] |
H. Amann,
Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.
|
[8] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Teubner-Texte Math. Teubner, Stuttgart, 133 (1993), 9–126.
doi: 10.1007/978-3-663-11336-2_1. |
[9] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[10] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. II. Function Spaces, Monographs in Mathematics, 106. Birkhäuser/Springer, Cham, 2019.
doi: 10.1007/978-3-030-11763-4. |
[11] |
B. Augner and D. Bothe, A thermodynamically consistent model for bulk-surface systems with sorption and surface chemistry, in preparation. Google Scholar |
[12] |
B. Augner and D. Bothe, Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry, submitted (2020), https://arXiv.org/abs/2006.12098. Google Scholar |
[13] |
E. Berkson and T. A. Gillespie,
Spectral decompositions and harmonic analysis on UMD spaces, Studia Math., 112 (1994), 13-49.
|
[14] |
D. Bothe, The instantaneous limit of a reaction-diffusion system, in Evolation Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 215–224. |
[15] |
D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, in Parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhüser/Springer Basel AG, Basel, 80 (2011), 81–93.
doi: 10.1007/978-3-0348-0075-4_5. |
[16] |
D. Bothe and W. Dreyer,
Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.
doi: 10.1007/s00707-014-1275-1. |
[17] |
D. Bothe, M. Köhne, S. Maier and J. Saal,
Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.
doi: 10.1016/j.jmaa.2016.08.016. |
[18] |
D. Bothe and M. Pierre,
Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate, J. Math. Anal. Appl., 368 (2010), 120-132.
doi: 10.1016/j.jmaa.2010.02.044. |
[19] |
D. Bothe and M. Pierre,
The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 49-59.
doi: 10.3934/dcdss.2012.5.49. |
[20] |
D. Bothe and G. Rolland,
Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities, Acta Appl. Math., 139 (2015), 25-57.
doi: 10.1007/s10440-014-9968-y. |
[21] |
H. Brenner, Is the tracer velocity of a fluid continuum equal to its mass velocity?, Phys. Rev. E, 70 (2004), 061201.
doi: 10.1103/PhysRevE.70.061201. |
[22] |
J. A. Cañizo, L. Desvillettes and K. Fellner,
Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, 39 (2014), 1185-1204.
doi: 10.1080/03605302.2013.829500. |
[23] |
P. Clément, B. de Pagter, F. A. Sukochev and H. Witvliet,
Schauder decomposition and multiplier theorems, Studia Math., 138 (2000), 135-163.
|
[24] |
R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114 pp.
doi: 10.1090/memo/0788. |
[25] |
R. Denk, M. Hieber and J. Prüss,
Optimal $ \mathrm{L}_p$-$ \mathrm{L}_q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[26] |
R. Denk and M. Kaip, General Parabolic Mixed Order Systems in $ \mathrm{L}_p$ and Applications, Operator Theory: Advances and Applications, 239. Birkhäuser/Springer, Cham, 2013.
doi: 10.1007/978-3-319-02000-6. |
[27] |
R. Denk, J. Prüss and R. Zacher,
Maximal $ \mathrm{L}_p$-regularity of parabolic problems with boundary dynamics of relaxiation type, J. Funct. Anal., 255 (2008), 3149-3187.
doi: 10.1016/j.jfa.2008.07.012. |
[28] |
L. Desvillettes and K. Fellner,
Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.
doi: 10.1016/j.jmaa.2005.07.003. |
[29] |
L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle,
Global existence for quadratic systems of reaction-diffusion, Adv. Nonlinear Stud., 7 (2007), 491-511.
doi: 10.1515/ans-2007-0309. |
[30] |
L. Desvillettes and K. Fellner,
Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoam., 24 (2008), 407-431.
doi: 10.4171/RMI/541. |
[31] |
L. Desvillettes, K. Fellner and B. Q. Tang,
Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.
doi: 10.1137/16M1073935. |
[32] |
P.-E. Druet and A. Jüngel,
Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient, SIAM J. Math. Anal., 52 (2020), 2179-2197.
doi: 10.1137/19M1301473. |
[33] |
J. B. Duncan and H. L. Toor,
An experimental study of three component gas diffusion, A. I. Ch. E. Journal, 8 (1962), 38-41.
doi: 10.1002/aic.690080112. |
[34] |
R. Haase, Thermodynamik Irreversibler Prozesse, Fortschritte der physikalischen Chemie, 8, Steinkopff, Darmstadt, 1963. Google Scholar |
[35] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, 1981. |
[36] |
M. Herberg, M. Meyries, J. Prüss and M. Wilke,
Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159 (2017), 264-284.
doi: 10.1016/j.na.2016.07.010. |
[37] |
N. J. Kalton and L. Weis,
The $H^\infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345.
doi: 10.1007/s002080100231. |
[38] |
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[39] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. |
[40] |
A. Lunardi, Interpolation Theory, $3^\text{rd}$ Edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16, Edizioni della Normale, Pisa, 2018.
doi: 10.1007/978-88-7642-638-4. |
[41] |
R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in Nonlinear Equations in the Applied Sciences, (eds. W.F. Ames and C. Rogers), Math. Sci. Engrg., Academic Press, Boston, MA, 185 (1992), 363–398.
doi: 10.1016/S0076-5392(08)62804-0. |
[42] |
M. Pierre,
Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems, J. Evol. Equ., 3 (2003), 153-168.
doi: 10.1007/s000280300007. |
[43] |
M. Pierre,
Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4. |
[44] |
M. Pierre and D. Schmitt,
Blow up in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269.
doi: 10.1137/S0036141095295437. |
[45] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall Inc., Englewood Cliffs, N. J., 1967. |
[46] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin, 1984.
doi: 10.1007/BFb0099278. |
[47] |
R. Schnaubelt,
Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions, Advances in Differential Equations, 22 (2017), 541-592.
|
[48] |
O. Souček, V. Orava, J. Málek and D. Bothe,
A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption, Int. J. Eng. Sci., 138 (2019), 82-117.
doi: 10.1016/j.ijengsci.2019.01.001. |
[49] |
B. Terreni, Hölder regularity results for nonhomogeneous parabolic initial-boundary value linear problems, in Semigroup Theory and Applications (Trieste, 1987), Lecture Notes in Pure and Appl. Math. Dekker, New York, 116 (1989), 387–401. |
show all references
References:
[1] |
P. Acquistapace and B. Terreni, Fully nonlinear parabolic systems, Recent Advances in Nonlinear Elliptic and Parabolic Problems (Nancy, 1988), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow, 208 (1989), 97–111. |
[2] |
H. Amann,
Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.
doi: 10.1007/BF02774019. |
[3] |
H. Amann,
Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83.
doi: 10.1515/crll.1985.360.47. |
[4] |
H. Amann,
Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal., 12 (1988), 895-919.
doi: 10.1016/0362-546X(88)90073-9. |
[5] |
H. Amann,
Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.
doi: 10.1016/0022-0396(88)90156-8. |
[6] |
H. Amann,
Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219-250.
doi: 10.1007/BF01215256. |
[7] |
H. Amann,
Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.
|
[8] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Teubner-Texte Math. Teubner, Stuttgart, 133 (1993), 9–126.
doi: 10.1007/978-3-663-11336-2_1. |
[9] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[10] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. II. Function Spaces, Monographs in Mathematics, 106. Birkhäuser/Springer, Cham, 2019.
doi: 10.1007/978-3-030-11763-4. |
[11] |
B. Augner and D. Bothe, A thermodynamically consistent model for bulk-surface systems with sorption and surface chemistry, in preparation. Google Scholar |
[12] |
B. Augner and D. Bothe, Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry, submitted (2020), https://arXiv.org/abs/2006.12098. Google Scholar |
[13] |
E. Berkson and T. A. Gillespie,
Spectral decompositions and harmonic analysis on UMD spaces, Studia Math., 112 (1994), 13-49.
|
[14] |
D. Bothe, The instantaneous limit of a reaction-diffusion system, in Evolation Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 215–224. |
[15] |
D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, in Parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhüser/Springer Basel AG, Basel, 80 (2011), 81–93.
doi: 10.1007/978-3-0348-0075-4_5. |
[16] |
D. Bothe and W. Dreyer,
Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.
doi: 10.1007/s00707-014-1275-1. |
[17] |
D. Bothe, M. Köhne, S. Maier and J. Saal,
Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.
doi: 10.1016/j.jmaa.2016.08.016. |
[18] |
D. Bothe and M. Pierre,
Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate, J. Math. Anal. Appl., 368 (2010), 120-132.
doi: 10.1016/j.jmaa.2010.02.044. |
[19] |
D. Bothe and M. Pierre,
The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 49-59.
doi: 10.3934/dcdss.2012.5.49. |
[20] |
D. Bothe and G. Rolland,
Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities, Acta Appl. Math., 139 (2015), 25-57.
doi: 10.1007/s10440-014-9968-y. |
[21] |
H. Brenner, Is the tracer velocity of a fluid continuum equal to its mass velocity?, Phys. Rev. E, 70 (2004), 061201.
doi: 10.1103/PhysRevE.70.061201. |
[22] |
J. A. Cañizo, L. Desvillettes and K. Fellner,
Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, 39 (2014), 1185-1204.
doi: 10.1080/03605302.2013.829500. |
[23] |
P. Clément, B. de Pagter, F. A. Sukochev and H. Witvliet,
Schauder decomposition and multiplier theorems, Studia Math., 138 (2000), 135-163.
|
[24] |
R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114 pp.
doi: 10.1090/memo/0788. |
[25] |
R. Denk, M. Hieber and J. Prüss,
Optimal $ \mathrm{L}_p$-$ \mathrm{L}_q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.
doi: 10.1007/s00209-007-0120-9. |
[26] |
R. Denk and M. Kaip, General Parabolic Mixed Order Systems in $ \mathrm{L}_p$ and Applications, Operator Theory: Advances and Applications, 239. Birkhäuser/Springer, Cham, 2013.
doi: 10.1007/978-3-319-02000-6. |
[27] |
R. Denk, J. Prüss and R. Zacher,
Maximal $ \mathrm{L}_p$-regularity of parabolic problems with boundary dynamics of relaxiation type, J. Funct. Anal., 255 (2008), 3149-3187.
doi: 10.1016/j.jfa.2008.07.012. |
[28] |
L. Desvillettes and K. Fellner,
Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.
doi: 10.1016/j.jmaa.2005.07.003. |
[29] |
L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle,
Global existence for quadratic systems of reaction-diffusion, Adv. Nonlinear Stud., 7 (2007), 491-511.
doi: 10.1515/ans-2007-0309. |
[30] |
L. Desvillettes and K. Fellner,
Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoam., 24 (2008), 407-431.
doi: 10.4171/RMI/541. |
[31] |
L. Desvillettes, K. Fellner and B. Q. Tang,
Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.
doi: 10.1137/16M1073935. |
[32] |
P.-E. Druet and A. Jüngel,
Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient, SIAM J. Math. Anal., 52 (2020), 2179-2197.
doi: 10.1137/19M1301473. |
[33] |
J. B. Duncan and H. L. Toor,
An experimental study of three component gas diffusion, A. I. Ch. E. Journal, 8 (1962), 38-41.
doi: 10.1002/aic.690080112. |
[34] |
R. Haase, Thermodynamik Irreversibler Prozesse, Fortschritte der physikalischen Chemie, 8, Steinkopff, Darmstadt, 1963. Google Scholar |
[35] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, 1981. |
[36] |
M. Herberg, M. Meyries, J. Prüss and M. Wilke,
Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159 (2017), 264-284.
doi: 10.1016/j.na.2016.07.010. |
[37] |
N. J. Kalton and L. Weis,
The $H^\infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345.
doi: 10.1007/s002080100231. |
[38] |
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[39] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. |
[40] |
A. Lunardi, Interpolation Theory, $3^\text{rd}$ Edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16, Edizioni della Normale, Pisa, 2018.
doi: 10.1007/978-88-7642-638-4. |
[41] |
R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in Nonlinear Equations in the Applied Sciences, (eds. W.F. Ames and C. Rogers), Math. Sci. Engrg., Academic Press, Boston, MA, 185 (1992), 363–398.
doi: 10.1016/S0076-5392(08)62804-0. |
[42] |
M. Pierre,
Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems, J. Evol. Equ., 3 (2003), 153-168.
doi: 10.1007/s000280300007. |
[43] |
M. Pierre,
Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4. |
[44] |
M. Pierre and D. Schmitt,
Blow up in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269.
doi: 10.1137/S0036141095295437. |
[45] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall Inc., Englewood Cliffs, N. J., 1967. |
[46] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin, 1984.
doi: 10.1007/BFb0099278. |
[47] |
R. Schnaubelt,
Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions, Advances in Differential Equations, 22 (2017), 541-592.
|
[48] |
O. Souček, V. Orava, J. Málek and D. Bothe,
A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption, Int. J. Eng. Sci., 138 (2019), 82-117.
doi: 10.1016/j.ijengsci.2019.01.001. |
[49] |
B. Terreni, Hölder regularity results for nonhomogeneous parabolic initial-boundary value linear problems, in Semigroup Theory and Applications (Trieste, 1987), Lecture Notes in Pure and Appl. Math. Dekker, New York, 116 (1989), 387–401. |


[1] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[2] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[3] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283 |
[4] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[5] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[6] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[7] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[8] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[9] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[10] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[11] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[12] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[13] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[14] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[15] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[16] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[17] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[18] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[19] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[20] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]