• Previous Article
    Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion
  • DCDS-S Home
  • This Issue
  • Next Article
    Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh
doi: 10.3934/dcdss.2020406

The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model

Fachbereich Mathematik, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany

* Corresponding author: Dieter Bothe, bothe@mma.tu-darmstadt.de

Dedicated to Michel Pierre on the occasion of his 70th anniversary

Received  November 2019 Revised  June 2020 Published  July 2020

Within this paper, we consider a heterogeneous catalysis system consisting of a bulk phase $ \Omega $ (chemical reactor) and an active surface $ \Sigma = \partial \Omega $ (catalytic surface), between which chemical substances are exchanged via adsorption (transport of mass from the bulk boundary layer adjacent to the surface, leading to surface-accumulation by a transformation into an adsorbed form) and desorption (the reverse process). Quite typically, as is the purpose of catalysis, chemical reactions on the surface occur several orders of magnitude faster than, say, chemical reactions within the bulk phase, and sorption processes are often quite fast as well. Starting from the non-dimensional version, different limit models, especially for fast surface chemistry and fast sorption at the surface, are considered. For a particular model problem, questions of local-in-time existence of strong and classical solutions and positivity of solutions are addressed.

Citation: Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020406
References:
[1]

P. Acquistapace and B. Terreni, Fully nonlinear parabolic systems, Recent Advances in Nonlinear Elliptic and Parabolic Problems (Nancy, 1988), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow, 208 (1989), 97–111.  Google Scholar

[2]

H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.  doi: 10.1007/BF02774019.  Google Scholar

[3]

H. Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83.  doi: 10.1515/crll.1985.360.47.  Google Scholar

[4]

H. Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal., 12 (1988), 895-919.  doi: 10.1016/0362-546X(88)90073-9.  Google Scholar

[5]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[6]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219-250.  doi: 10.1007/BF01215256.  Google Scholar

[7]

H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.   Google Scholar

[8]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Teubner-Texte Math. Teubner, Stuttgart, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[9]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[10]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. II. Function Spaces, Monographs in Mathematics, 106. Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-11763-4.  Google Scholar

[11]

B. Augner and D. Bothe, A thermodynamically consistent model for bulk-surface systems with sorption and surface chemistry, in preparation. Google Scholar

[12]

B. Augner and D. Bothe, Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry, submitted (2020), https://arXiv.org/abs/2006.12098. Google Scholar

[13]

E. Berkson and T. A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math., 112 (1994), 13-49.   Google Scholar

[14]

D. Bothe, The instantaneous limit of a reaction-diffusion system, in Evolation Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 215–224.  Google Scholar

[15]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, in Parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhüser/Springer Basel AG, Basel, 80 (2011), 81–93. doi: 10.1007/978-3-0348-0075-4_5.  Google Scholar

[16]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.  doi: 10.1007/s00707-014-1275-1.  Google Scholar

[17]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[18]

D. Bothe and M. Pierre, Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate, J. Math. Anal. Appl., 368 (2010), 120-132.  doi: 10.1016/j.jmaa.2010.02.044.  Google Scholar

[19]

D. Bothe and M. Pierre, The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 49-59.  doi: 10.3934/dcdss.2012.5.49.  Google Scholar

[20]

D. Bothe and G. Rolland, Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities, Acta Appl. Math., 139 (2015), 25-57.  doi: 10.1007/s10440-014-9968-y.  Google Scholar

[21]

H. Brenner, Is the tracer velocity of a fluid continuum equal to its mass velocity?, Phys. Rev. E, 70 (2004), 061201. doi: 10.1103/PhysRevE.70.061201.  Google Scholar

[22]

J. A. CañizoL. Desvillettes and K. Fellner, Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, 39 (2014), 1185-1204.  doi: 10.1080/03605302.2013.829500.  Google Scholar

[23]

P. ClémentB. de PagterF. A. Sukochev and H. Witvliet, Schauder decomposition and multiplier theorems, Studia Math., 138 (2000), 135-163.   Google Scholar

[24]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.  Google Scholar

[25]

R. DenkM. Hieber and J. Prüss, Optimal $ \mathrm{L}_p$-$ \mathrm{L}_q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[26]

R. Denk and M. Kaip, General Parabolic Mixed Order Systems in $ \mathrm{L}_p$ and Applications, Operator Theory: Advances and Applications, 239. Birkhäuser/Springer, Cham, 2013. doi: 10.1007/978-3-319-02000-6.  Google Scholar

[27]

R. DenkJ. Prüss and R. Zacher, Maximal $ \mathrm{L}_p$-regularity of parabolic problems with boundary dynamics of relaxiation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.  Google Scholar

[28]

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.  Google Scholar

[29]

L. DesvillettesK. FellnerM. Pierre and J. Vovelle, Global existence for quadratic systems of reaction-diffusion, Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.  Google Scholar

[30]

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoam., 24 (2008), 407-431.  doi: 10.4171/RMI/541.  Google Scholar

[31]

L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.  Google Scholar

[32]

P.-E. Druet and A. Jüngel, Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient, SIAM J. Math. Anal., 52 (2020), 2179-2197.  doi: 10.1137/19M1301473.  Google Scholar

[33]

J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion, A. I. Ch. E. Journal, 8 (1962), 38-41.  doi: 10.1002/aic.690080112.  Google Scholar

[34]

R. Haase, Thermodynamik Irreversibler Prozesse, Fortschritte der physikalischen Chemie, 8, Steinkopff, Darmstadt, 1963. Google Scholar

[35]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, 1981.  Google Scholar

[36]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.  Google Scholar

[37]

N. J. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345.  doi: 10.1007/s002080100231.  Google Scholar

[38]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.  Google Scholar

[39]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.  Google Scholar

[40]

A. Lunardi, Interpolation Theory, $3^\text{rd}$ Edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[41]

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in Nonlinear Equations in the Applied Sciences, (eds. W.F. Ames and C. Rogers), Math. Sci. Engrg., Academic Press, Boston, MA, 185 (1992), 363–398. doi: 10.1016/S0076-5392(08)62804-0.  Google Scholar

[42]

M. Pierre, Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems, J. Evol. Equ., 3 (2003), 153-168.  doi: 10.1007/s000280300007.  Google Scholar

[43]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[44]

M. Pierre and D. Schmitt, Blow up in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269.  doi: 10.1137/S0036141095295437.  Google Scholar

[45]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall Inc., Englewood Cliffs, N. J., 1967.  Google Scholar

[46]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[47]

R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions, Advances in Differential Equations, 22 (2017), 541-592.   Google Scholar

[48]

O. SoučekV. OravaJ. Málek and D. Bothe, A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption, Int. J. Eng. Sci., 138 (2019), 82-117.  doi: 10.1016/j.ijengsci.2019.01.001.  Google Scholar

[49]

B. Terreni, Hölder regularity results for nonhomogeneous parabolic initial-boundary value linear problems, in Semigroup Theory and Applications (Trieste, 1987), Lecture Notes in Pure and Appl. Math. Dekker, New York, 116 (1989), 387–401.  Google Scholar

show all references

References:
[1]

P. Acquistapace and B. Terreni, Fully nonlinear parabolic systems, Recent Advances in Nonlinear Elliptic and Parabolic Problems (Nancy, 1988), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow, 208 (1989), 97–111.  Google Scholar

[2]

H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.  doi: 10.1007/BF02774019.  Google Scholar

[3]

H. Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83.  doi: 10.1515/crll.1985.360.47.  Google Scholar

[4]

H. Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal., 12 (1988), 895-919.  doi: 10.1016/0362-546X(88)90073-9.  Google Scholar

[5]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[6]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219-250.  doi: 10.1007/BF01215256.  Google Scholar

[7]

H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.   Google Scholar

[8]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Teubner-Texte Math. Teubner, Stuttgart, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[9]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[10]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. II. Function Spaces, Monographs in Mathematics, 106. Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-11763-4.  Google Scholar

[11]

B. Augner and D. Bothe, A thermodynamically consistent model for bulk-surface systems with sorption and surface chemistry, in preparation. Google Scholar

[12]

B. Augner and D. Bothe, Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry, submitted (2020), https://arXiv.org/abs/2006.12098. Google Scholar

[13]

E. Berkson and T. A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math., 112 (1994), 13-49.   Google Scholar

[14]

D. Bothe, The instantaneous limit of a reaction-diffusion system, in Evolation Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 215–224.  Google Scholar

[15]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, in Parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhüser/Springer Basel AG, Basel, 80 (2011), 81–93. doi: 10.1007/978-3-0348-0075-4_5.  Google Scholar

[16]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.  doi: 10.1007/s00707-014-1275-1.  Google Scholar

[17]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[18]

D. Bothe and M. Pierre, Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate, J. Math. Anal. Appl., 368 (2010), 120-132.  doi: 10.1016/j.jmaa.2010.02.044.  Google Scholar

[19]

D. Bothe and M. Pierre, The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 49-59.  doi: 10.3934/dcdss.2012.5.49.  Google Scholar

[20]

D. Bothe and G. Rolland, Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities, Acta Appl. Math., 139 (2015), 25-57.  doi: 10.1007/s10440-014-9968-y.  Google Scholar

[21]

H. Brenner, Is the tracer velocity of a fluid continuum equal to its mass velocity?, Phys. Rev. E, 70 (2004), 061201. doi: 10.1103/PhysRevE.70.061201.  Google Scholar

[22]

J. A. CañizoL. Desvillettes and K. Fellner, Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, 39 (2014), 1185-1204.  doi: 10.1080/03605302.2013.829500.  Google Scholar

[23]

P. ClémentB. de PagterF. A. Sukochev and H. Witvliet, Schauder decomposition and multiplier theorems, Studia Math., 138 (2000), 135-163.   Google Scholar

[24]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114 pp. doi: 10.1090/memo/0788.  Google Scholar

[25]

R. DenkM. Hieber and J. Prüss, Optimal $ \mathrm{L}_p$-$ \mathrm{L}_q$ estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[26]

R. Denk and M. Kaip, General Parabolic Mixed Order Systems in $ \mathrm{L}_p$ and Applications, Operator Theory: Advances and Applications, 239. Birkhäuser/Springer, Cham, 2013. doi: 10.1007/978-3-319-02000-6.  Google Scholar

[27]

R. DenkJ. Prüss and R. Zacher, Maximal $ \mathrm{L}_p$-regularity of parabolic problems with boundary dynamics of relaxiation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.  Google Scholar

[28]

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.  Google Scholar

[29]

L. DesvillettesK. FellnerM. Pierre and J. Vovelle, Global existence for quadratic systems of reaction-diffusion, Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.  Google Scholar

[30]

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoam., 24 (2008), 407-431.  doi: 10.4171/RMI/541.  Google Scholar

[31]

L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.  Google Scholar

[32]

P.-E. Druet and A. Jüngel, Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient, SIAM J. Math. Anal., 52 (2020), 2179-2197.  doi: 10.1137/19M1301473.  Google Scholar

[33]

J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion, A. I. Ch. E. Journal, 8 (1962), 38-41.  doi: 10.1002/aic.690080112.  Google Scholar

[34]

R. Haase, Thermodynamik Irreversibler Prozesse, Fortschritte der physikalischen Chemie, 8, Steinkopff, Darmstadt, 1963. Google Scholar

[35]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, 1981.  Google Scholar

[36]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.  Google Scholar

[37]

N. J. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345.  doi: 10.1007/s002080100231.  Google Scholar

[38]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.  Google Scholar

[39]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.  Google Scholar

[40]

A. Lunardi, Interpolation Theory, $3^\text{rd}$ Edition, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16, Edizioni della Normale, Pisa, 2018. doi: 10.1007/978-88-7642-638-4.  Google Scholar

[41]

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in Nonlinear Equations in the Applied Sciences, (eds. W.F. Ames and C. Rogers), Math. Sci. Engrg., Academic Press, Boston, MA, 185 (1992), 363–398. doi: 10.1016/S0076-5392(08)62804-0.  Google Scholar

[42]

M. Pierre, Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems, J. Evol. Equ., 3 (2003), 153-168.  doi: 10.1007/s000280300007.  Google Scholar

[43]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[44]

M. Pierre and D. Schmitt, Blow up in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269.  doi: 10.1137/S0036141095295437.  Google Scholar

[45]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall Inc., Englewood Cliffs, N. J., 1967.  Google Scholar

[46]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[47]

R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions, Advances in Differential Equations, 22 (2017), 541-592.   Google Scholar

[48]

O. SoučekV. OravaJ. Málek and D. Bothe, A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption, Int. J. Eng. Sci., 138 (2019), 82-117.  doi: 10.1016/j.ijengsci.2019.01.001.  Google Scholar

[49]

B. Terreni, Hölder regularity results for nonhomogeneous parabolic initial-boundary value linear problems, in Semigroup Theory and Applications (Trieste, 1987), Lecture Notes in Pure and Appl. Math. Dekker, New York, 116 (1989), 387–401.  Google Scholar

Figure 1.  Physical and chemical mechanisms in a bulk-surface reaction diffusion system
Figure 2.  Free sites on the surface are interpreted as an additional species $ A_0^\Sigma $
[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]