Advanced Search
Article Contents
Article Contents

The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data

  • * Corresponding author: Sahbi Keraani

    * Corresponding author: Sahbi Keraani
Abstract Full Text(HTML) Related Papers Cited by
  • Based on recent works of Dodson-Murphy [12] and Arora-Dodson-Murphy [3], we give a unified approach for the energy scattering with radially symmetric initial data for nonlinear Schrödinger equations and nonlinear Choquard equations in any dimensions $ N\geq 2 $. We also discuss its applications for other Schrödinger-type equations.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35P25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.  doi: 10.1215/21562261-2265914.
    [2] A. K. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Cont. Dyn. Syst., 39 (2019), 6643-6668.  doi: 10.3934/dcds.2019289.
    [3] A. K. AroraB. Dodson and J. Murphy, Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 148 (2020), 1653-1663.  doi: 10.1090/proc/14824.
    [4] A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, preprint, arXiv: 1904.05339.
    [5] L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, preprint, arXiv: 1905.02663.
    [6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, AMS, 2003. doi: 10.1090/cln/010.
    [7] T. CazenaveD. Fang and J. Xie, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.
    [8] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.
    [9] C. V. Coffman, Uniqueness of the ground state solution for $\Delta u - u + u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.
    [10] V. D. Dinh, Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions, preprint, arXiv: 1908.02987.
    [11] V. D. Dinh, Dynamics of radial solutions for the focusing fourth-order Schrödinger equations, preprint, arXiv: 2001.03022.
    [12] B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.
    [13] B. Dodson and J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.  doi: 10.4310/MRL.2018.v25.n6.a5.
    [14] T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.
    [15] L. G. Farah and C. Guzman, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262 (2017), 4175-4231.  doi: 10.1016/j.jde.2017.01.013.
    [16] L. G. Farah and C. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc., 51 (2020), 449-512.  doi: 10.1007/s00574-019-00160-1.
    [17] D. Foschi, Inhomogeneous strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.  doi: 10.1142/S0219891605000361.
    [18] C. Guevara, Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express., 2014 (2014), 177-243. 
    [19] Q. Guo, Scattering for the focusing $L^2$-supercritical and $\dot{H}^2$-subcritical biharmonic NLS equations, Comm. Partial Differential Equations, 41 (2016), 185-207.  doi: 10.1080/03605302.2015.1116556.
    [20] Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549.
    [21] M. Hamano and M. Ikeda, Global dynamics below the ground state for the focusing Schrödinger equation with a potential, J. Evol. Equ., 2019 (in press).
    [22] J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.
    [23] Y. Hong, Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pure Appl. Anal., 15 (2016), 1571-1601.  doi: 10.3934/cpaa.2016003.
    [24] M. Keel and T. Tao, Endpoint strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.
    [25] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.
    [26] J. KriegerE. Lenzmann and P. Raphaël, On stability of pseudo-conformal blowup for $L^2$-critical Hartree NLS, Ann. Henri Poincaré, 10 (2009), 1159-1205.  doi: 10.1007/s00023-009-0010-2.
    [27] M. K. Kwong, Uniqueness of positive solution of $\Delta u - u + u^p = 0$ in $ \mathbb R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.
    [28] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.
    [29] C. MiaoG. Xu and L. Zhao, The cauchy problem of the hartree equation, J. Partial Diff. Eqs., 21 (2008), 22-44. 
    [30] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.
    [31] T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.
    [32] C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.
    [33] E. Stein and T. S. Murphy, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993.
    [34] J. Stubbe, Global solutions and stable ground states of nonlinear Schrödinger equations, Phys. D, 48 (1991), 259-272.  doi: 10.1016/0167-2789(91)90087-P.
    [35] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.
    [36] T. Tao, On the asymptotic behavior of large radial data for a focusing nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.  doi: 10.4310/DPDE.2004.v1.n1.a1.
    [37] T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.
    [38] M. C. Vilela, Inhomogeneous strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136.  doi: 10.1090/S0002-9947-06-04099-2.
    [39] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576. 
    [40] C. L. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 134, 25 pp. doi: 10.1007/s00526-016-1068-6.
    [41] C. Xu and T. Zhao, A remark on the scattering theory for the 2D radial focusing INLS, preprint, arXiv: 1908.00743.
  • 加载中

Article Metrics

HTML views(723) PDF downloads(315) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint