doi: 10.3934/dcdss.2020407

The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data

1. 

Laboratoire Paul Painlevé UMR 8524, Université de Lille CNRS, 59655 Villeneuve d'Ascq Cedex, France

2. 

Department of Mathematics, HCMC University of Pedagogy, 280 An Duong Vuong, Ho Chi Minh, Vietnam

* Corresponding author: Sahbi Keraani

Received  January 2020 Revised  June 2020 Published  July 2020

Based on recent works of Dodson-Murphy [12] and Arora-Dodson-Murphy [3], we give a unified approach for the energy scattering with radially symmetric initial data for nonlinear Schrödinger equations and nonlinear Choquard equations in any dimensions $ N\geq 2 $. We also discuss its applications for other Schrödinger-type equations.

Citation: Van Duong Dinh, Sahbi Keraani. The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020407
References:
[1]

T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.  doi: 10.1215/21562261-2265914.  Google Scholar

[2]

A. K. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Cont. Dyn. Syst., 39 (2019), 6643-6668.  doi: 10.3934/dcds.2019289.  Google Scholar

[3]

A. K. AroraB. Dodson and J. Murphy, Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 148 (2020), 1653-1663.  doi: 10.1090/proc/14824.  Google Scholar

[4]

A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, preprint, arXiv: 1904.05339. Google Scholar

[5]

L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, preprint, arXiv: 1905.02663. Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, AMS, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

T. CazenaveD. Fang and J. Xie, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[8]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.  Google Scholar

[9]

C. V. Coffman, Uniqueness of the ground state solution for $\Delta u - u + u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.  Google Scholar

[10]

V. D. Dinh, Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions, preprint, arXiv: 1908.02987. Google Scholar

[11]

V. D. Dinh, Dynamics of radial solutions for the focusing fourth-order Schrödinger equations, preprint, arXiv: 2001.03022. Google Scholar

[12]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.  Google Scholar

[13]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.  doi: 10.4310/MRL.2018.v25.n6.a5.  Google Scholar

[14]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[15]

L. G. Farah and C. Guzman, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262 (2017), 4175-4231.  doi: 10.1016/j.jde.2017.01.013.  Google Scholar

[16]

L. G. Farah and C. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc., 51 (2020), 449-512.  doi: 10.1007/s00574-019-00160-1.  Google Scholar

[17]

D. Foschi, Inhomogeneous strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.  doi: 10.1142/S0219891605000361.  Google Scholar

[18]

C. Guevara, Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express., 2014 (2014), 177-243.   Google Scholar

[19]

Q. Guo, Scattering for the focusing $L^2$-supercritical and $\dot{H}^2$-subcritical biharmonic NLS equations, Comm. Partial Differential Equations, 41 (2016), 185-207.  doi: 10.1080/03605302.2015.1116556.  Google Scholar

[20]

Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549. Google Scholar

[21]

M. Hamano and M. Ikeda, Global dynamics below the ground state for the focusing Schrödinger equation with a potential, J. Evol. Equ., 2019 (in press). Google Scholar

[22]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[23]

Y. Hong, Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pure Appl. Anal., 15 (2016), 1571-1601.  doi: 10.3934/cpaa.2016003.  Google Scholar

[24]

M. Keel and T. Tao, Endpoint strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[25]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[26]

J. KriegerE. Lenzmann and P. Raphaël, On stability of pseudo-conformal blowup for $L^2$-critical Hartree NLS, Ann. Henri Poincaré, 10 (2009), 1159-1205.  doi: 10.1007/s00023-009-0010-2.  Google Scholar

[27]

M. K. Kwong, Uniqueness of positive solution of $\Delta u - u + u^p = 0$ in $ \mathbb R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[28]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar

[29]

C. MiaoG. Xu and L. Zhao, The cauchy problem of the hartree equation, J. Partial Diff. Eqs., 21 (2008), 22-44.   Google Scholar

[30]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[31]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[32]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[33]

E. Stein and T. S. Murphy, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993.  Google Scholar

[34]

J. Stubbe, Global solutions and stable ground states of nonlinear Schrödinger equations, Phys. D, 48 (1991), 259-272.  doi: 10.1016/0167-2789(91)90087-P.  Google Scholar

[35]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[36]

T. Tao, On the asymptotic behavior of large radial data for a focusing nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.  doi: 10.4310/DPDE.2004.v1.n1.a1.  Google Scholar

[37]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.  Google Scholar

[38]

M. C. Vilela, Inhomogeneous strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[39]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[40]

C. L. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 134, 25 pp. doi: 10.1007/s00526-016-1068-6.  Google Scholar

[41]

C. Xu and T. Zhao, A remark on the scattering theory for the 2D radial focusing INLS, preprint, arXiv: 1908.00743. Google Scholar

show all references

References:
[1]

T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.  doi: 10.1215/21562261-2265914.  Google Scholar

[2]

A. K. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Cont. Dyn. Syst., 39 (2019), 6643-6668.  doi: 10.3934/dcds.2019289.  Google Scholar

[3]

A. K. AroraB. Dodson and J. Murphy, Scattering below the ground state for the 2D radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 148 (2020), 1653-1663.  doi: 10.1090/proc/14824.  Google Scholar

[4]

A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, preprint, arXiv: 1904.05339. Google Scholar

[5]

L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, preprint, arXiv: 1905.02663. Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, AMS, 2003. doi: 10.1090/cln/010.  Google Scholar

[7]

T. CazenaveD. Fang and J. Xie, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[8]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.  Google Scholar

[9]

C. V. Coffman, Uniqueness of the ground state solution for $\Delta u - u + u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.  Google Scholar

[10]

V. D. Dinh, Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions, preprint, arXiv: 1908.02987. Google Scholar

[11]

V. D. Dinh, Dynamics of radial solutions for the focusing fourth-order Schrödinger equations, preprint, arXiv: 2001.03022. Google Scholar

[12]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.  Google Scholar

[13]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.  doi: 10.4310/MRL.2018.v25.n6.a5.  Google Scholar

[14]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[15]

L. G. Farah and C. Guzman, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262 (2017), 4175-4231.  doi: 10.1016/j.jde.2017.01.013.  Google Scholar

[16]

L. G. Farah and C. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc., 51 (2020), 449-512.  doi: 10.1007/s00574-019-00160-1.  Google Scholar

[17]

D. Foschi, Inhomogeneous strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.  doi: 10.1142/S0219891605000361.  Google Scholar

[18]

C. Guevara, Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express., 2014 (2014), 177-243.   Google Scholar

[19]

Q. Guo, Scattering for the focusing $L^2$-supercritical and $\dot{H}^2$-subcritical biharmonic NLS equations, Comm. Partial Differential Equations, 41 (2016), 185-207.  doi: 10.1080/03605302.2015.1116556.  Google Scholar

[20]

Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549. Google Scholar

[21]

M. Hamano and M. Ikeda, Global dynamics below the ground state for the focusing Schrödinger equation with a potential, J. Evol. Equ., 2019 (in press). Google Scholar

[22]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[23]

Y. Hong, Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pure Appl. Anal., 15 (2016), 1571-1601.  doi: 10.3934/cpaa.2016003.  Google Scholar

[24]

M. Keel and T. Tao, Endpoint strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[25]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[26]

J. KriegerE. Lenzmann and P. Raphaël, On stability of pseudo-conformal blowup for $L^2$-critical Hartree NLS, Ann. Henri Poincaré, 10 (2009), 1159-1205.  doi: 10.1007/s00023-009-0010-2.  Google Scholar

[27]

M. K. Kwong, Uniqueness of positive solution of $\Delta u - u + u^p = 0$ in $ \mathbb R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[28]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar

[29]

C. MiaoG. Xu and L. Zhao, The cauchy problem of the hartree equation, J. Partial Diff. Eqs., 21 (2008), 22-44.   Google Scholar

[30]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[31]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[32]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[33]

E. Stein and T. S. Murphy, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993.  Google Scholar

[34]

J. Stubbe, Global solutions and stable ground states of nonlinear Schrödinger equations, Phys. D, 48 (1991), 259-272.  doi: 10.1016/0167-2789(91)90087-P.  Google Scholar

[35]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[36]

T. Tao, On the asymptotic behavior of large radial data for a focusing nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.  doi: 10.4310/DPDE.2004.v1.n1.a1.  Google Scholar

[37]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.  Google Scholar

[38]

M. C. Vilela, Inhomogeneous strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136.  doi: 10.1090/S0002-9947-06-04099-2.  Google Scholar

[39]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[40]

C. L. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 134, 25 pp. doi: 10.1007/s00526-016-1068-6.  Google Scholar

[41]

C. Xu and T. Zhao, A remark on the scattering theory for the 2D radial focusing INLS, preprint, arXiv: 1908.00743. Google Scholar

[1]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[10]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[11]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[13]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[18]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

2019 Impact Factor: 1.233

Article outline

[Back to Top]