• Previous Article
    Signed-distance function based non-rigid registration of image series with varying image intensity
  • DCDS-S Home
  • This Issue
  • Next Article
    Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays
doi: 10.3934/dcdss.2020408

Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space

LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France

* Corresponding author: Pierre Gilles Lemarié–Rieusset

Received  January 2020 Revised  June 2020 Published  July 2020

We characterise the pressure term in the incompressible 2D and 3D Navier–Stokes equations for solutions defined on the whole space.

Citation: Pedro Gabriel Fernández-Dalgo, Pierre Gilles Lemarié–Rieusset. Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020408
References:
[1]

A. Basson, Solutions Spatialement Homogènes Adaptées des Équations de Navier–Stokes, Thèse, Université d'Évry, 2006. Google Scholar

[2]

A. Basson, Homogeneous statistical solutions and local energy inequality for 3D Navier–Stokes equations, Commun. Math. Phys., 266 (2006), 17-35.  doi: 10.1007/s00220-006-0009-1.  Google Scholar

[3]

Z. Bradshaw and T. P. Tsai, Discretely self-similar solutions to the Navier-Stokes equations with data in $L^2_ {\rm loc} $ satisfying the local energy inequality, Analysis and PDE, 12 (2019), 1943-1962.  doi: 10.2140/apde.2019.12.1943.  Google Scholar

[4]

Z. Bradshaw and T. P. Tsai, Global existence, regularity, and uniqueness of infinite energy solutions to the Navier–Stokes equations, preprint, arXiv: 1907.00256. Google Scholar

[5]

Z. Bradshaw, I. Kukavica and T. P. Tsai, Existence of global weak solutions to the Navier-Stokes equations in weighted spaces, preprint, arXiv: 1910.06929v1. Google Scholar

[6]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.  Google Scholar

[7]

D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $ L^2_{\rm loc }(\mathbb{R}^3)$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1019-1039.  doi: 10.1016/j.anihpc.2017.10.001.  Google Scholar

[8]

D. ChamorroP. G. Lemarié–Rieusset and K. Mayoufi, The role of the pressure in the partial regularity theory for weak solutions of the Navier–Stokes equations, Arch. Rat. Mech. Anal., 228 (2018), 237-277.  doi: 10.1007/s00205-017-1191-3.  Google Scholar

[9]

S. Dostoglou, Homogeneous measures and spatial ergodicity of the Navier–Stokes equations, preprint, 2002. Google Scholar

[10]

S. Dubois, What is a solution to the Navier–Stokes equations?, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 27-32.  doi: 10.1016/S1631-073X(02)02419-6.  Google Scholar

[11]

E. FabesB. F. Jones and N. Riviere, The initial value problem for the Navier–Stokes equations with data in $L^p$, Arch. Ration. Mech. Anal., 45 (1972), 222-240.  doi: 10.1007/BF00281533.  Google Scholar

[12]

P. G. Fernández-Dalgo and P. G. Lemarié–Rieusset, Weak solutions for Navier–Stokes equations with initial data in weighted $L^2$ spaces, Arch. Ration. Mech. Anal., 237 (2020), 347-382.  doi: 10.1007/s00205-020-01510-w.  Google Scholar

[13]

H. Fujita and T. Kato, On the non-stationary Navier-Stokes system, Rendiconti Seminario Math. Univ. Padova, 32 (1962), 243-260.   Google Scholar

[14]

G. FurioliP. G. Lemarié-Rieusset and E. Terraneo., Unicité dans $\text{L}^3({\mathbb{R}^{3}})$ et d'autres espaces limites pour Navier–Stokes, Revista Mat. Iberoamericana, 16 (2000), 605-667.  doi: 10.4171/RMI/286.  Google Scholar

[15]

N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality, in Nonlinear Equations and Spectral Theory, 141–164, Amer. Math. Soc. Transl. Ser. 2,220, Amer. Math. Soc., Providence, RI, 2007. doi: 10.1090/trans2/220/07.  Google Scholar

[16]

I. Kukavica, On local uniqueness of solutions of the Navier–Stokes equations with bounded initial data, J. Diff. Eq., 194 (2003), 39-50.  doi: 10.1016/S0022-0396(03)00153-0.  Google Scholar

[17]

I. Kukavica and V. Vicol, On local uniqueness of weak solutions to the Navier–Stokes system with $ {\rm BMO}^{-1}$ initial datum, J. Dynam. Differential Equation, 20 (2008), 719-732.  doi: 10.1007/s10884-008-9116-3.  Google Scholar

[18]

P. G. Lemarié–Rieusset, Solutions faibles d'énergie infinie pour les équations de Navier–Stokes dans $\mathbb{R}^{3}$, C. R. Acad. Sci. Paris, Ser. I, 328 (1999), 1133-1138.  doi: 10.1016/S0764-4442(99)80427-3.  Google Scholar

[19] P. G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem, CRC Press, 2002.  doi: 10.1201/9781420035674.  Google Scholar
[20]

P. G. Lemarié–Rieusset, The Navier–Stokes Problem in the 21st Century, Chapman & Hall/CRC, 2016. doi: 10.1201/b19556.  Google Scholar

[21]

J. Leray, Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[22]

M. I. Vishik and A. V. Fursikov, Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier-Stokes, Ann. Scuola Norm. Sup. Pisa, série IV, 4 (1977), 531-576.   Google Scholar

[23]

M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Dordrecht: Kluwer Academic Publishers, 1988. doi: 10.1007/978-94-009-1423-0.  Google Scholar

[24]

J. Wolf, On the local pressure of the Navier–Stokes equations and related systems, Adv. Differential Equations, 22 (2017), 305-338.   Google Scholar

show all references

References:
[1]

A. Basson, Solutions Spatialement Homogènes Adaptées des Équations de Navier–Stokes, Thèse, Université d'Évry, 2006. Google Scholar

[2]

A. Basson, Homogeneous statistical solutions and local energy inequality for 3D Navier–Stokes equations, Commun. Math. Phys., 266 (2006), 17-35.  doi: 10.1007/s00220-006-0009-1.  Google Scholar

[3]

Z. Bradshaw and T. P. Tsai, Discretely self-similar solutions to the Navier-Stokes equations with data in $L^2_ {\rm loc} $ satisfying the local energy inequality, Analysis and PDE, 12 (2019), 1943-1962.  doi: 10.2140/apde.2019.12.1943.  Google Scholar

[4]

Z. Bradshaw and T. P. Tsai, Global existence, regularity, and uniqueness of infinite energy solutions to the Navier–Stokes equations, preprint, arXiv: 1907.00256. Google Scholar

[5]

Z. Bradshaw, I. Kukavica and T. P. Tsai, Existence of global weak solutions to the Navier-Stokes equations in weighted spaces, preprint, arXiv: 1910.06929v1. Google Scholar

[6]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.  Google Scholar

[7]

D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $ L^2_{\rm loc }(\mathbb{R}^3)$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1019-1039.  doi: 10.1016/j.anihpc.2017.10.001.  Google Scholar

[8]

D. ChamorroP. G. Lemarié–Rieusset and K. Mayoufi, The role of the pressure in the partial regularity theory for weak solutions of the Navier–Stokes equations, Arch. Rat. Mech. Anal., 228 (2018), 237-277.  doi: 10.1007/s00205-017-1191-3.  Google Scholar

[9]

S. Dostoglou, Homogeneous measures and spatial ergodicity of the Navier–Stokes equations, preprint, 2002. Google Scholar

[10]

S. Dubois, What is a solution to the Navier–Stokes equations?, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 27-32.  doi: 10.1016/S1631-073X(02)02419-6.  Google Scholar

[11]

E. FabesB. F. Jones and N. Riviere, The initial value problem for the Navier–Stokes equations with data in $L^p$, Arch. Ration. Mech. Anal., 45 (1972), 222-240.  doi: 10.1007/BF00281533.  Google Scholar

[12]

P. G. Fernández-Dalgo and P. G. Lemarié–Rieusset, Weak solutions for Navier–Stokes equations with initial data in weighted $L^2$ spaces, Arch. Ration. Mech. Anal., 237 (2020), 347-382.  doi: 10.1007/s00205-020-01510-w.  Google Scholar

[13]

H. Fujita and T. Kato, On the non-stationary Navier-Stokes system, Rendiconti Seminario Math. Univ. Padova, 32 (1962), 243-260.   Google Scholar

[14]

G. FurioliP. G. Lemarié-Rieusset and E. Terraneo., Unicité dans $\text{L}^3({\mathbb{R}^{3}})$ et d'autres espaces limites pour Navier–Stokes, Revista Mat. Iberoamericana, 16 (2000), 605-667.  doi: 10.4171/RMI/286.  Google Scholar

[15]

N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality, in Nonlinear Equations and Spectral Theory, 141–164, Amer. Math. Soc. Transl. Ser. 2,220, Amer. Math. Soc., Providence, RI, 2007. doi: 10.1090/trans2/220/07.  Google Scholar

[16]

I. Kukavica, On local uniqueness of solutions of the Navier–Stokes equations with bounded initial data, J. Diff. Eq., 194 (2003), 39-50.  doi: 10.1016/S0022-0396(03)00153-0.  Google Scholar

[17]

I. Kukavica and V. Vicol, On local uniqueness of weak solutions to the Navier–Stokes system with $ {\rm BMO}^{-1}$ initial datum, J. Dynam. Differential Equation, 20 (2008), 719-732.  doi: 10.1007/s10884-008-9116-3.  Google Scholar

[18]

P. G. Lemarié–Rieusset, Solutions faibles d'énergie infinie pour les équations de Navier–Stokes dans $\mathbb{R}^{3}$, C. R. Acad. Sci. Paris, Ser. I, 328 (1999), 1133-1138.  doi: 10.1016/S0764-4442(99)80427-3.  Google Scholar

[19] P. G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem, CRC Press, 2002.  doi: 10.1201/9781420035674.  Google Scholar
[20]

P. G. Lemarié–Rieusset, The Navier–Stokes Problem in the 21st Century, Chapman & Hall/CRC, 2016. doi: 10.1201/b19556.  Google Scholar

[21]

J. Leray, Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[22]

M. I. Vishik and A. V. Fursikov, Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier-Stokes, Ann. Scuola Norm. Sup. Pisa, série IV, 4 (1977), 531-576.   Google Scholar

[23]

M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Dordrecht: Kluwer Academic Publishers, 1988. doi: 10.1007/978-94-009-1423-0.  Google Scholar

[24]

J. Wolf, On the local pressure of the Navier–Stokes equations and related systems, Adv. Differential Equations, 22 (2017), 305-338.   Google Scholar

[1]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[2]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[3]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[4]

Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014

[5]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[6]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[7]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[8]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[9]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[10]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[11]

Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2495-2532. doi: 10.3934/dcdsb.2020020

[12]

Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2127-2140. doi: 10.3934/cpaa.2014.13.2127

[13]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[14]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[15]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[16]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[17]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[18]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[19]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[20]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (27)
  • HTML views (143)
  • Cited by (0)

[Back to Top]