
-
Previous Article
Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $
- DCDS-S Home
- This Issue
-
Next Article
Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion
An extension of the landweber regularization for a backward time fractional wave problem
1. | School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
2. | School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical, Modeling and High Performance Scientific Computing, Xiamen University, Xiamen 361005, China |
3. | Bordeaux INP, Laboratoire I2M UMR 5295, Pessac 33607, France |
In this paper, we investigate numerical methods for a backward problem of the time-fractional wave equation in bounded domains. We propose two fractional filter regularization methods, which can be regarded as an extension of the classical Landweber iteration for the time-fractional wave backward problem. The idea is first to transform the ill-posed backward problem into a weighted normal operator equation, then construct the regularization methods for the operator equation by introducing suitable fractional filters. Both a priori and a posteriori regularization parameter choice rules are investigated, together with an estimate for the smallest regularization parameter according to a discrepancy principle. Furthermore, an error analysis is carried out to derive the convergence rates of the regularized solutions generated by the proposed methods. The theoretical estimate shows that the proposed fractional regularizations efficiently overcome the well-known over-smoothing drawback caused by the classical regularizations. Some numerical examples are provided to confirm the theoretical results. In particular, our numerical tests demonstrate that the fractional regularization is actually more efficient than the classical methods for problems having low regularity.
References:
[1] |
O. P. Agrawal,
Formulation of euler-lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.
doi: 10.1016/S0022-247X(02)00180-4. |
[2] |
O. P. Agrawal,
Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155.
doi: 10.1023/A:1016539022492. |
[3] |
D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert,
Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412.
doi: 10.1029/2000WR900031. |
[4] |
D. Bianchi, A. Buccini, M. Donatelli and S. Serra-Capizzano, Iterated fractional tikhonov regularization, Inverse Problems, 31 (2015), 055005, 34pp.
doi: 10.1088/0266-5611/31/5/055005. |
[5] |
H. Cheng and C. L. Fu,
An iteration regularization for a time-fractional inverse diffusion problem, Applied Mathematical Modelling, 36 (2012), 5642-5649.
doi: 10.1016/j.apm.2012.01.016. |
[6] |
E. Cuesta, M. Kirane and S. A. Malik,
Image structure preserving denoising using generalized fractional time integrals, Signal Processing, 92 (2012), 553-563.
doi: 10.1016/j.sigpro.2011.09.001. |
[7] |
Y. Deng and Z. Liu, Iteration methods on sideways parabolic equations, Inverse Problems, 25 (2009), 095004, 14pp.
doi: 10.1088/0266-5611/25/9/095004. |
[8] |
Y. Deng and Z. Liu,
New fast iteration for determining surface temperature and heat flux of general sideways parabolic equation, Nonlinear Analysis: Real World Applications, 12 (2011), 156-166.
doi: 10.1016/j.nonrwa.2010.06.005. |
[9] |
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer Science & Business Media, 2010.
doi: 10.1007/978-3-642-14574-2. |
[10] |
R. Du, W. R. Cao and Z. Z. Sun,
A compact difference scheme for the fractional diffusion-wave equation, Applied Mathematical Modelling, 34 (2010), 2998-3007.
doi: 10.1016/j.apm.2010.01.008. |
[11] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publisher, Dordrecht, Boston, London, 1996. |
[12] |
G. H. Gao and Z. Z. Sun,
The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain, Journal of Computational Physics, 236 (2013), 443-460.
doi: 10.1016/j.jcp.2012.11.011. |
[13] |
D. Gerth, E. Klann, R. Ramlau and L. Reichel,
On fractional tikhonov regularization, Journal of Inverse and Ill-posed Problems, 23 (2015), 611-625.
doi: 10.1515/jiip-2014-0050. |
[14] |
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations, 104p, Boston Pitman Publication, 1984. |
[15] |
Y. Han, X. Xiong and X. Xue,
A fractional landweber method for solving backward time-fractional diffusion problem, Computers & Mathematics with Applications, 78 (2019), 81-91.
doi: 10.1016/j.camwa.2019.02.017. |
[16] |
M. E. Hochstenbach and L. Reichel,
Fractional tikhonov regularization for linear discrete ill-posed problems, BIT Numerical Mathematics, 51 (2011), 197-215.
doi: 10.1007/s10543-011-0313-9. |
[17] |
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4419-8474-6. |
[18] |
E. Klann, P. Maass and R. Ramlau,
Two-step regularization methods for linear inverse problems, Journal of Inverse and Ill-posed Problems, 14 (2006), 583-607.
doi: 10.1515/156939406778474523. |
[19] |
X. J. Li and C. J. Xu,
A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131.
doi: 10.1137/080718942. |
[20] |
Y. M. Lin and C. J. Xu,
Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of computational physics, 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001. |
[21] |
J. J. Liu and M. Yamamoto,
A backward problem for the time-fractional diffusion equation, Applicable Analysis, 89 (2010), 1769-1788.
doi: 10.1080/00036810903479731. |
[22] |
R. L. Magin, Fractional Calculus in Bioengineering, volume 2(6)., Begell House Redding, 2006. Google Scholar |
[23] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, 2010.
doi: 10.1142/9781848163300. |
[24] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[25] |
I. Podlubny, Fractional Differential Equations, Acad. Press, New York, 1999.
![]() |
[26] |
I. Podlubny and M. Kacenak, Mittag-leffler Function, the matlab routine, 2006. Google Scholar |
[27] |
M. Richter, Inverse Problems: Basics, Theory and Applications in Geophysics, Birkhäuser, 2016. |
[28] |
K. Sakamoto and M. Yamamoto,
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058. |
[29] |
F. Y. Song and C. J. Xu,
Spectral direction splitting methods for two-dimensional space fractional diffusion equations, Journal of Computational Physics, 299 (2015), 196-214.
doi: 10.1016/j.jcp.2015.07.011. |
[30] |
Z. Z. Sun and X. Wu,
A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics, 56 (2006), 193-209.
doi: 10.1016/j.apnum.2005.03.003. |
[31] |
J. G. Wang and T. Wei,
An iterative method for backward time-fractional diffusion problem, Numerical Methods for Partial Differential Equations, 30 (2014), 2029-2041.
doi: 10.1002/num.21887. |
[32] |
J. G. Wang, T. Wei and Y. B. Zhou,
Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Applied Mathematical Modelling, 37 (2013), 8518-8532.
doi: 10.1016/j.apm.2013.03.071. |
[33] |
L. Wang and J. J. Liu,
Data regularization for a backward time-fractional diffusion problem, Computers & Mathematics with Applications, 64 (2012), 3613-3626.
doi: 10.1016/j.camwa.2012.10.001. |
[34] |
T. Wei and J. G. Wang,
A modified quasi-boundary value method for the backward time-fractional diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 603-621.
doi: 10.1051/m2an/2013107. |
[35] |
T. Wei and Y. Zhang,
The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Computers & Mathematics with Applications, 75 (2018), 3632-3648.
doi: 10.1016/j.camwa.2018.02.022. |
[36] |
X. Xiong, X. Xue and Z. Qian,
A modified iterative regularization method for ill-posed problems, Applied Numerical Mathematics, 122 (2017), 108-128.
doi: 10.1016/j.apnum.2017.08.004. |
[37] |
F. Yang, Y. Zhang and X. X. Li,
Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation, Numerical Algorithms, 83 (2020), 1509-1530.
doi: 10.1007/s11075-019-00734-6. |
show all references
References:
[1] |
O. P. Agrawal,
Formulation of euler-lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.
doi: 10.1016/S0022-247X(02)00180-4. |
[2] |
O. P. Agrawal,
Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155.
doi: 10.1023/A:1016539022492. |
[3] |
D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert,
Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412.
doi: 10.1029/2000WR900031. |
[4] |
D. Bianchi, A. Buccini, M. Donatelli and S. Serra-Capizzano, Iterated fractional tikhonov regularization, Inverse Problems, 31 (2015), 055005, 34pp.
doi: 10.1088/0266-5611/31/5/055005. |
[5] |
H. Cheng and C. L. Fu,
An iteration regularization for a time-fractional inverse diffusion problem, Applied Mathematical Modelling, 36 (2012), 5642-5649.
doi: 10.1016/j.apm.2012.01.016. |
[6] |
E. Cuesta, M. Kirane and S. A. Malik,
Image structure preserving denoising using generalized fractional time integrals, Signal Processing, 92 (2012), 553-563.
doi: 10.1016/j.sigpro.2011.09.001. |
[7] |
Y. Deng and Z. Liu, Iteration methods on sideways parabolic equations, Inverse Problems, 25 (2009), 095004, 14pp.
doi: 10.1088/0266-5611/25/9/095004. |
[8] |
Y. Deng and Z. Liu,
New fast iteration for determining surface temperature and heat flux of general sideways parabolic equation, Nonlinear Analysis: Real World Applications, 12 (2011), 156-166.
doi: 10.1016/j.nonrwa.2010.06.005. |
[9] |
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer Science & Business Media, 2010.
doi: 10.1007/978-3-642-14574-2. |
[10] |
R. Du, W. R. Cao and Z. Z. Sun,
A compact difference scheme for the fractional diffusion-wave equation, Applied Mathematical Modelling, 34 (2010), 2998-3007.
doi: 10.1016/j.apm.2010.01.008. |
[11] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publisher, Dordrecht, Boston, London, 1996. |
[12] |
G. H. Gao and Z. Z. Sun,
The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain, Journal of Computational Physics, 236 (2013), 443-460.
doi: 10.1016/j.jcp.2012.11.011. |
[13] |
D. Gerth, E. Klann, R. Ramlau and L. Reichel,
On fractional tikhonov regularization, Journal of Inverse and Ill-posed Problems, 23 (2015), 611-625.
doi: 10.1515/jiip-2014-0050. |
[14] |
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations, 104p, Boston Pitman Publication, 1984. |
[15] |
Y. Han, X. Xiong and X. Xue,
A fractional landweber method for solving backward time-fractional diffusion problem, Computers & Mathematics with Applications, 78 (2019), 81-91.
doi: 10.1016/j.camwa.2019.02.017. |
[16] |
M. E. Hochstenbach and L. Reichel,
Fractional tikhonov regularization for linear discrete ill-posed problems, BIT Numerical Mathematics, 51 (2011), 197-215.
doi: 10.1007/s10543-011-0313-9. |
[17] |
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4419-8474-6. |
[18] |
E. Klann, P. Maass and R. Ramlau,
Two-step regularization methods for linear inverse problems, Journal of Inverse and Ill-posed Problems, 14 (2006), 583-607.
doi: 10.1515/156939406778474523. |
[19] |
X. J. Li and C. J. Xu,
A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131.
doi: 10.1137/080718942. |
[20] |
Y. M. Lin and C. J. Xu,
Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of computational physics, 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001. |
[21] |
J. J. Liu and M. Yamamoto,
A backward problem for the time-fractional diffusion equation, Applicable Analysis, 89 (2010), 1769-1788.
doi: 10.1080/00036810903479731. |
[22] |
R. L. Magin, Fractional Calculus in Bioengineering, volume 2(6)., Begell House Redding, 2006. Google Scholar |
[23] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, 2010.
doi: 10.1142/9781848163300. |
[24] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[25] |
I. Podlubny, Fractional Differential Equations, Acad. Press, New York, 1999.
![]() |
[26] |
I. Podlubny and M. Kacenak, Mittag-leffler Function, the matlab routine, 2006. Google Scholar |
[27] |
M. Richter, Inverse Problems: Basics, Theory and Applications in Geophysics, Birkhäuser, 2016. |
[28] |
K. Sakamoto and M. Yamamoto,
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058. |
[29] |
F. Y. Song and C. J. Xu,
Spectral direction splitting methods for two-dimensional space fractional diffusion equations, Journal of Computational Physics, 299 (2015), 196-214.
doi: 10.1016/j.jcp.2015.07.011. |
[30] |
Z. Z. Sun and X. Wu,
A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics, 56 (2006), 193-209.
doi: 10.1016/j.apnum.2005.03.003. |
[31] |
J. G. Wang and T. Wei,
An iterative method for backward time-fractional diffusion problem, Numerical Methods for Partial Differential Equations, 30 (2014), 2029-2041.
doi: 10.1002/num.21887. |
[32] |
J. G. Wang, T. Wei and Y. B. Zhou,
Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Applied Mathematical Modelling, 37 (2013), 8518-8532.
doi: 10.1016/j.apm.2013.03.071. |
[33] |
L. Wang and J. J. Liu,
Data regularization for a backward time-fractional diffusion problem, Computers & Mathematics with Applications, 64 (2012), 3613-3626.
doi: 10.1016/j.camwa.2012.10.001. |
[34] |
T. Wei and J. G. Wang,
A modified quasi-boundary value method for the backward time-fractional diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 603-621.
doi: 10.1051/m2an/2013107. |
[35] |
T. Wei and Y. Zhang,
The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Computers & Mathematics with Applications, 75 (2018), 3632-3648.
doi: 10.1016/j.camwa.2018.02.022. |
[36] |
X. Xiong, X. Xue and Z. Qian,
A modified iterative regularization method for ill-posed problems, Applied Numerical Mathematics, 122 (2017), 108-128.
doi: 10.1016/j.apnum.2017.08.004. |
[37] |
F. Yang, Y. Zhang and X. X. Li,
Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation, Numerical Algorithms, 83 (2020), 1509-1530.
doi: 10.1007/s11075-019-00734-6. |





|
|
|||||||||||
ExFLR (21) | ImFLR (22) | ExFLR (21) | ImFLR (22) | |||||||||
7324 | 0.0103 | 7328 | 0.0103 | 147 | 0.0188 | 152 | 0.0187 | |||||
4775 | 0.0506 | 4778 | 0.0506 | 96 | 0.0634 | 99 | 0.0634 | |||||
3677 | 0.1003 | 3680 | 0.1002 | 73 | 0.1209 | 76 | 0.1188 | |||||
14913 | 0.0323 | 14915 | 0.0323 | 510 | 0.0647 | 511 | 0.0641 | |||||
3846 | 0.0674 | 3846 | 0.0674 | 8 | 0.1183 | 13 | 0.1187 | |||||
701 | 0.1068 | 706 | 0.1067 | 6 | 0.1211 | 11 | 0.1200 | |||||
232223 | 0.2947 | 232224 | 0.2947 | 69253 | 0.2728 | 69254 | 0.2728 | |||||
32815 | 0.3827 | 32817 | 0.3827 | 7456 | 0.3753 | 7458 | 0.3752 | |||||
20594 | 0.4186 | 20595 | 0.4186 | 4695 | 0.4032 | 4697 | 0.4032 |
|
|
|||||||||||
ExFLR (21) | ImFLR (22) | ExFLR (21) | ImFLR (22) | |||||||||
7324 | 0.0103 | 7328 | 0.0103 | 147 | 0.0188 | 152 | 0.0187 | |||||
4775 | 0.0506 | 4778 | 0.0506 | 96 | 0.0634 | 99 | 0.0634 | |||||
3677 | 0.1003 | 3680 | 0.1002 | 73 | 0.1209 | 76 | 0.1188 | |||||
14913 | 0.0323 | 14915 | 0.0323 | 510 | 0.0647 | 511 | 0.0641 | |||||
3846 | 0.0674 | 3846 | 0.0674 | 8 | 0.1183 | 13 | 0.1187 | |||||
701 | 0.1068 | 706 | 0.1067 | 6 | 0.1211 | 11 | 0.1200 | |||||
232223 | 0.2947 | 232224 | 0.2947 | 69253 | 0.2728 | 69254 | 0.2728 | |||||
32815 | 0.3827 | 32817 | 0.3827 | 7456 | 0.3753 | 7458 | 0.3752 | |||||
20594 | 0.4186 | 20595 | 0.4186 | 4695 | 0.4032 | 4697 | 0.4032 |
[1] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021002 |
[2] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[3] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[4] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[5] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[6] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[7] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[8] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[9] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[10] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[11] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[12] |
Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, 2021, 20 (2) : 783-799. doi: 10.3934/cpaa.2020290 |
[13] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[14] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[15] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[16] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[17] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[18] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[19] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[20] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]