|
[1]
|
O. P. Agrawal, Formulation of euler-lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.
doi: 10.1016/S0022-247X(02)00180-4.
|
|
[2]
|
O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 29 (2002), 145-155.
doi: 10.1023/A:1016539022492.
|
|
[3]
|
D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412.
doi: 10.1029/2000WR900031.
|
|
[4]
|
D. Bianchi, A. Buccini, M. Donatelli and S. Serra-Capizzano, Iterated fractional tikhonov regularization, Inverse Problems, 31 (2015), 055005, 34pp.
doi: 10.1088/0266-5611/31/5/055005.
|
|
[5]
|
H. Cheng and C. L. Fu, An iteration regularization for a time-fractional inverse diffusion problem, Applied Mathematical Modelling, 36 (2012), 5642-5649.
doi: 10.1016/j.apm.2012.01.016.
|
|
[6]
|
E. Cuesta, M. Kirane and S. A. Malik, Image structure preserving denoising using generalized fractional time integrals, Signal Processing, 92 (2012), 553-563.
doi: 10.1016/j.sigpro.2011.09.001.
|
|
[7]
|
Y. Deng and Z. Liu, Iteration methods on sideways parabolic equations, Inverse Problems, 25 (2009), 095004, 14pp.
doi: 10.1088/0266-5611/25/9/095004.
|
|
[8]
|
Y. Deng and Z. Liu, New fast iteration for determining surface temperature and heat flux of general sideways parabolic equation, Nonlinear Analysis: Real World Applications, 12 (2011), 156-166.
doi: 10.1016/j.nonrwa.2010.06.005.
|
|
[9]
|
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer Science & Business Media, 2010.
doi: 10.1007/978-3-642-14574-2.
|
|
[10]
|
R. Du, W. R. Cao and Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Applied Mathematical Modelling, 34 (2010), 2998-3007.
doi: 10.1016/j.apm.2010.01.008.
|
|
[11]
|
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publisher, Dordrecht, Boston, London, 1996.
|
|
[12]
|
G. H. Gao and Z. Z. Sun, The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain, Journal of Computational Physics, 236 (2013), 443-460.
doi: 10.1016/j.jcp.2012.11.011.
|
|
[13]
|
D. Gerth, E. Klann, R. Ramlau and L. Reichel, On fractional tikhonov regularization, Journal of Inverse and Ill-posed Problems, 23 (2015), 611-625.
doi: 10.1515/jiip-2014-0050.
|
|
[14]
|
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations, 104p, Boston Pitman Publication, 1984.
|
|
[15]
|
Y. Han, X. Xiong and X. Xue, A fractional landweber method for solving backward time-fractional diffusion problem, Computers & Mathematics with Applications, 78 (2019), 81-91.
doi: 10.1016/j.camwa.2019.02.017.
|
|
[16]
|
M. E. Hochstenbach and L. Reichel, Fractional tikhonov regularization for linear discrete ill-posed problems, BIT Numerical Mathematics, 51 (2011), 197-215.
doi: 10.1007/s10543-011-0313-9.
|
|
[17]
|
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4419-8474-6.
|
|
[18]
|
E. Klann, P. Maass and R. Ramlau, Two-step regularization methods for linear inverse problems, Journal of Inverse and Ill-posed Problems, 14 (2006), 583-607.
doi: 10.1515/156939406778474523.
|
|
[19]
|
X. J. Li and C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131.
doi: 10.1137/080718942.
|
|
[20]
|
Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of computational physics, 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001.
|
|
[21]
|
J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Applicable Analysis, 89 (2010), 1769-1788.
doi: 10.1080/00036810903479731.
|
|
[22]
|
R. L. Magin, Fractional Calculus in Bioengineering, volume 2(6)., Begell House Redding, 2006.
|
|
[23]
|
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, 2010.
doi: 10.1142/9781848163300.
|
|
[24]
|
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3.
|
|
[25]
|
I. Podlubny, Fractional Differential Equations, Acad. Press, New York, 1999.
|
|
[26]
|
I. Podlubny and M. Kacenak, Mittag-leffler Function, the matlab routine, 2006.
|
|
[27]
|
M. Richter, Inverse Problems: Basics, Theory and Applications in Geophysics, Birkhäuser, 2016.
|
|
[28]
|
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058.
|
|
[29]
|
F. Y. Song and C. J. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, Journal of Computational Physics, 299 (2015), 196-214.
doi: 10.1016/j.jcp.2015.07.011.
|
|
[30]
|
Z. Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics, 56 (2006), 193-209.
doi: 10.1016/j.apnum.2005.03.003.
|
|
[31]
|
J. G. Wang and T. Wei, An iterative method for backward time-fractional diffusion problem, Numerical Methods for Partial Differential Equations, 30 (2014), 2029-2041.
doi: 10.1002/num.21887.
|
|
[32]
|
J. G. Wang, T. Wei and Y. B. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Applied Mathematical Modelling, 37 (2013), 8518-8532.
doi: 10.1016/j.apm.2013.03.071.
|
|
[33]
|
L. Wang and J. J. Liu, Data regularization for a backward time-fractional diffusion problem, Computers & Mathematics with Applications, 64 (2012), 3613-3626.
doi: 10.1016/j.camwa.2012.10.001.
|
|
[34]
|
T. Wei and J. G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 603-621.
doi: 10.1051/m2an/2013107.
|
|
[35]
|
T. Wei and Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Computers & Mathematics with Applications, 75 (2018), 3632-3648.
doi: 10.1016/j.camwa.2018.02.022.
|
|
[36]
|
X. Xiong, X. Xue and Z. Qian, A modified iterative regularization method for ill-posed problems, Applied Numerical Mathematics, 122 (2017), 108-128.
doi: 10.1016/j.apnum.2017.08.004.
|
|
[37]
|
F. Yang, Y. Zhang and X. X. Li, Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation, Numerical Algorithms, 83 (2020), 1509-1530.
doi: 10.1007/s11075-019-00734-6.
|