• Previous Article
    Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation
  • DCDS-S Home
  • This Issue
  • Next Article
    Non-standard boundary conditions for the linearized Korteweg-de Vries equation
August  2021, 14(8): 2655-2670. doi: 10.3934/dcdss.2020410

Global attractor for a one dimensional weakly damped half-wave equation

Laboratoire de Recherche: Analyse, Probabilité et Fractals, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisie

Received  February 2020 Revised  April 2020 Published  August 2021 Early access  July 2020

We discuss the asymptotic behavior of the solutions for the fractional nonlinear Schrödinger equation that reads
$ u_t-iD u+ig(|u|^2)u+\gamma u = f\, . $
We prove that this behavior is characterized by the existence of a compact global attractor in the appropriate energy space.
Citation: Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2655-2670. doi: 10.3934/dcdss.2020410
References:
[1]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.

[2]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete and Continuous Dynamical Systems - B, 19 (2014), 651-677.  doi: 10.3934/dcdsb.2014.19.651.

[3]

A. Babin and M. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.

[4]

Y. Bahri, S. Ibrahim and H. Kikuchi, Remarks on solitary waves and Cauchy problem for a half-wave Schrödinger equations, (2018), 985–989. arXiv: math/1810.01385

[5]

F. BalibreaT. CaraballoP. E. Kloeden and J. Valero, Recent developments in dynamical systems: three prespectives, International Journal of Bifurcation and Chaos, 20 (2010), 2591-2636.  doi: 10.1142/S0218127410027246.

[6]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Analysis, 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.

[7]

H. Brezis and S. Wainger, A note on limiting cases of sobolev embeddings and convolution inequalities, Communications in Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.

[8]

D. CaiA. MajdaD. McLaughlin and E. Tabak, Spectrat bifurcation in dispersive wave turbulence, PNAS, 96 (1999), 14216-14221.  doi: 10.1073/pnas.96.25.14216.

[9]

C. CalgaroO. Goubet and E. Zahrouni, Finite dimensional global attractor for a semi-discrete fractional nonlinear Schrödinger equation, Math. Methods Appl. Sci., 40 (2017), 5563-5574.  doi: 10.1002/mma.4409.

[10]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, New York, 2003. doi: 10.1090/cln/010.

[11]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems - A, 35 (2015), 2863-2880.  doi: 10.3934/dcds.2015.35.2863.

[12]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Communications on Pure and Applied Analysis, 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.

[13]

A. Choffrut and O. Pocovnicu, Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Int. Math. Res. Not., 2018 (2018), 699-738.  doi: 10.1093/imrn/rnw246.

[14]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 1999. Available from: http://www.emis.de/monographs/Chueshov/book.pdf

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[16]

V. Dinh, Well-posedness of nolinear fractional Schrödinger and wave equations in Sobolev spaces, arXiv: math/1609.06181v3.

[17]

V. Dinh, On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation, Communications on Pure and Applied Analysis, 18 (2019), 689-708.  doi: 10.3934/cpaa.2019034.

[18]

E. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2017), 500-545.  doi: 10.1002/cpa.20134.

[19]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg type inequality and applications, Bull. Braz. Math. Soc. (New Series), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.

[20]

P. Gérard and S. Grellier, The cubic Szegö equation, Ann. Sc. de L'école Normale Supérieure, 43 (2010), 761-810.  doi: 10.24033/asens.2133.

[21]

P. Gérard and S. Grellier, Effective integrable dynamics for a certain nonlinear wave equation, Analysis and PDE, 5 (2012), 1139-1155.  doi: 10.2140/apde.2012.5.1139.

[22]

P. Gérard and S. Grellier, The cubic Szegö equation and Hankel operators, Société Mathématiques de France Astérisques, 389 (2017), vi+112 pp, Available from: https://hal.archives-ouvertes.fr/hal-01187657

[23]

O. Goubet and E. Zahrouni, Finite dimensional global attractor for a fractional nonlinear Schrödinger equation, NoDEA, 24 (2017), 59-74.  doi: 10.1007/s00030-017-0482-6.

[24]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Communications in Partial Differential Equations, 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.

[25]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.

[26]

N. Karachalios and N. M. Stavrakakis, Global attractor for the weakly damped driven Schrödinger equation in $H^2(\mathbb{R})$, NoDEA, 9 (2002), 347-360.  doi: 10.1007/s00030-002-8132-y.

[27]

J. KriegerE. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.

[28]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.

[29]

N. Laskin, Fractional Schrödinger equation,, Phys. Rev. E, 66 (2002), 56108, 7pp. doi: 10.1103/PhysRevE.66.056108.

[30]

S. LulaA. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations, 29 (2016), 455-492. 

[31]

A. MajdaD. McLaughlin and E. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 7 (1997), 9-44.  doi: 10.1007/BF02679124.

[32]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Analysis, 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.

[33]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001. doi: 10.1090/gsm/014.

[34]

A. Ouled Elmounir and F. Simondon, Attracteurs compacts pour des problèmes d'évolutions sans unicité, Annales de la Faculté des Sciences de Toulouse, 9 (2000), 631-654.  doi: 10.5802/afst.975.

[35]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.

[36]

O. Pocovnicu, First and second order approximations for a nonlinear wave equation, J. Dyn. Diff. Equa., 25 (2013), 305-333.  doi: 10.1007/s10884-013-9286-5.

[37]

G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 885–982. doi: 10.1016/S1874-575X(02)80038-8.

[38]

J. C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.

[39]

E. Russ, Racine carrées d'opérateurs elliptiques et espaces de Hardy, Confluente Mathematici, 3 (2011), 1-119.  doi: 10.1142/S1793744211000278.

[40]

F. Takahashi, Critical and subcritical fractional Trudinger-Moser type inequalities on $\mathbb{R}$, Advances in Nonlinear Analysis, 8 (2019), 868-884.  doi: 10.1515/anona-2017-0116.

[41]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics, 2$^{nd}$ edition, Springer applied mathmatical sciences, 68, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3.

[42]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and Its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.

[43]

M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783. 

[44]

H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., 286 (2017), 443-489.  doi: 10.1007/s00209-016-1768-9.

[45]

Y. ZhangH. ZhongM. BeliećN. AhmedY. Zhang and M. Xiao, Diffraction free beams in fractional Schrödinger equation, Sci. Rep., 6 (2016), 1-8.  doi: 10.1038/srep23645.

show all references

References:
[1]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.

[2]

B. Alouini and O. Goubet, Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Discrete and Continuous Dynamical Systems - B, 19 (2014), 651-677.  doi: 10.3934/dcdsb.2014.19.651.

[3]

A. Babin and M. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.

[4]

Y. Bahri, S. Ibrahim and H. Kikuchi, Remarks on solitary waves and Cauchy problem for a half-wave Schrödinger equations, (2018), 985–989. arXiv: math/1810.01385

[5]

F. BalibreaT. CaraballoP. E. Kloeden and J. Valero, Recent developments in dynamical systems: three prespectives, International Journal of Bifurcation and Chaos, 20 (2010), 2591-2636.  doi: 10.1142/S0218127410027246.

[6]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Analysis, 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.

[7]

H. Brezis and S. Wainger, A note on limiting cases of sobolev embeddings and convolution inequalities, Communications in Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.

[8]

D. CaiA. MajdaD. McLaughlin and E. Tabak, Spectrat bifurcation in dispersive wave turbulence, PNAS, 96 (1999), 14216-14221.  doi: 10.1073/pnas.96.25.14216.

[9]

C. CalgaroO. Goubet and E. Zahrouni, Finite dimensional global attractor for a semi-discrete fractional nonlinear Schrödinger equation, Math. Methods Appl. Sci., 40 (2017), 5563-5574.  doi: 10.1002/mma.4409.

[10]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, New York, 2003. doi: 10.1090/cln/010.

[11]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems - A, 35 (2015), 2863-2880.  doi: 10.3934/dcds.2015.35.2863.

[12]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Communications on Pure and Applied Analysis, 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.

[13]

A. Choffrut and O. Pocovnicu, Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Int. Math. Res. Not., 2018 (2018), 699-738.  doi: 10.1093/imrn/rnw246.

[14]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 1999. Available from: http://www.emis.de/monographs/Chueshov/book.pdf

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[16]

V. Dinh, Well-posedness of nolinear fractional Schrödinger and wave equations in Sobolev spaces, arXiv: math/1609.06181v3.

[17]

V. Dinh, On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation, Communications on Pure and Applied Analysis, 18 (2019), 689-708.  doi: 10.3934/cpaa.2019034.

[18]

E. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2017), 500-545.  doi: 10.1002/cpa.20134.

[19]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg type inequality and applications, Bull. Braz. Math. Soc. (New Series), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.

[20]

P. Gérard and S. Grellier, The cubic Szegö equation, Ann. Sc. de L'école Normale Supérieure, 43 (2010), 761-810.  doi: 10.24033/asens.2133.

[21]

P. Gérard and S. Grellier, Effective integrable dynamics for a certain nonlinear wave equation, Analysis and PDE, 5 (2012), 1139-1155.  doi: 10.2140/apde.2012.5.1139.

[22]

P. Gérard and S. Grellier, The cubic Szegö equation and Hankel operators, Société Mathématiques de France Astérisques, 389 (2017), vi+112 pp, Available from: https://hal.archives-ouvertes.fr/hal-01187657

[23]

O. Goubet and E. Zahrouni, Finite dimensional global attractor for a fractional nonlinear Schrödinger equation, NoDEA, 24 (2017), 59-74.  doi: 10.1007/s00030-017-0482-6.

[24]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Communications in Partial Differential Equations, 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.

[25]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.

[26]

N. Karachalios and N. M. Stavrakakis, Global attractor for the weakly damped driven Schrödinger equation in $H^2(\mathbb{R})$, NoDEA, 9 (2002), 347-360.  doi: 10.1007/s00030-002-8132-y.

[27]

J. KriegerE. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.

[28]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.

[29]

N. Laskin, Fractional Schrödinger equation,, Phys. Rev. E, 66 (2002), 56108, 7pp. doi: 10.1103/PhysRevE.66.056108.

[30]

S. LulaA. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations, 29 (2016), 455-492. 

[31]

A. MajdaD. McLaughlin and E. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 7 (1997), 9-44.  doi: 10.1007/BF02679124.

[32]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Analysis, 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.

[33]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001. doi: 10.1090/gsm/014.

[34]

A. Ouled Elmounir and F. Simondon, Attracteurs compacts pour des problèmes d'évolutions sans unicité, Annales de la Faculté des Sciences de Toulouse, 9 (2000), 631-654.  doi: 10.5802/afst.975.

[35]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.

[36]

O. Pocovnicu, First and second order approximations for a nonlinear wave equation, J. Dyn. Diff. Equa., 25 (2013), 305-333.  doi: 10.1007/s10884-013-9286-5.

[37]

G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 885–982. doi: 10.1016/S1874-575X(02)80038-8.

[38]

J. C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.

[39]

E. Russ, Racine carrées d'opérateurs elliptiques et espaces de Hardy, Confluente Mathematici, 3 (2011), 1-119.  doi: 10.1142/S1793744211000278.

[40]

F. Takahashi, Critical and subcritical fractional Trudinger-Moser type inequalities on $\mathbb{R}$, Advances in Nonlinear Analysis, 8 (2019), 868-884.  doi: 10.1515/anona-2017-0116.

[41]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics, 2$^{nd}$ edition, Springer applied mathmatical sciences, 68, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3.

[42]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and Its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.

[43]

M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783. 

[44]

H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., 286 (2017), 443-489.  doi: 10.1007/s00209-016-1768-9.

[45]

Y. ZhangH. ZhongM. BeliećN. AhmedY. Zhang and M. Xiao, Diffraction free beams in fractional Schrödinger equation, Sci. Rep., 6 (2016), 1-8.  doi: 10.1038/srep23645.

[1]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[2]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[3]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[4]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[5]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[6]

Hyungjin Huh. A special form of solution to half-wave equations. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021056

[7]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations and Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[8]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[9]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[10]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[11]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure and Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[12]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[13]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[14]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[15]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[16]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[17]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[18]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[19]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[20]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (237)
  • HTML views (408)
  • Cited by (1)

Other articles
by authors

[Back to Top]