doi: 10.3934/dcdss.2020411

Numerical simulations of parity–time symmetric nonlinear Schrödinger equations in critical case

Laboratoire de Mathématiques Informatique et Applications, Université des Antilles, BP 250, F-97157 Pointe à Pitre cedex, Guadeloupe FWI

* Corresponding author: E. Destyl, edes.destyl@univ-antilles.fr

Received  April 2020 Revised  May 2020 Published  July 2020

In this paper, we study the solution behavior of two coupled non–linear Schrödinger equations (CNLS) in the critical case, where one equation includes gain, while the other includes losses. Next, we present two numerical methods for solving the CNLS equations, for which we have made a comparison. These numerical experiments permit to illustrate other theoretical results proven by the authors [11]. We also obtain several numerical results for different non–linearities and investigate on the value of the blow up time relatively to some parameters.

Citation: Edès Destyl, Jacques Laminie, Paul Nuiro, Pascal Poullet. Numerical simulations of parity–time symmetric nonlinear Schrödinger equations in critical case. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020411
References:
[1]

G. P. Agrawal, Applications of Nonlinear Fiber Optics, Optics and Photonics Series 2nd edition, Academic Press, Elsevier, (2008). Google Scholar

[2]

X. AntoineC. Besse and S. Descombes, Artificial boundary conditions for one–dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), 2272-2293.  doi: 10.1137/040606983.  Google Scholar

[3]

V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation, Wave Motion, 14 (1991), 123-128.  doi: 10.1016/0165-2125(91)90053-Q.  Google Scholar

[4]

C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007), 947-1018.  doi: 10.1088/0034-4885/70/6/R03.  Google Scholar

[5]

C. M. Bender, B. Berntson, D. Parker and E. Samuel, Observation of PT phase transition in a simple mechanical system, Am. J. Phys., 81 (2013), 173. doi: 10.1119/1.4789549.  Google Scholar

[6]

C. M. Bender and S. Borttcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}-$symmetry, Phys. Rev. Lett., 80 (1998), 5243-5246.  doi: 10.1103/PhysRevLett.80.5243.  Google Scholar

[7]

E. DestylS. P. Nuiro and P. Poullet, On the global behavior of solutions of a coupled system of nonlinear Schrödinger equation, Stud. Appl. Math., 138 (2017), 227-244.  doi: 10.1111/sapm.12150.  Google Scholar

[8]

E. DestylS. P. NuiroD. E. Pelinovsky and P. Poullet, Coupled pendula chains under parametric $\mathcal{PT}$-symmetric driving force, Phys. Lett. A, 381 (2017), 3884-3892.  doi: 10.1016/j.physleta.2017.10.021.  Google Scholar

[9]

E. DestylS. P. Nuiro and P. Poullet, Critical blow up in coupled Parity-Time-symmetric nonlinear Schrödinger equations, AIMS Math., 2 (2017), 195-206.   Google Scholar

[10]

E. Destyl, Modélisation et Analyse de Systèmes D'équations de Schrödinger non Linéaire, Thèse de doctorat de l'Universté des Antilles, 28 septembre 2018, Pointe-à-Pitre, Guadeloupe. Google Scholar

[11]

J.-P. DiasM. FigueiraV. V. Konotop and D. A. Zezyulin, Supercritical blow up in coupled parity-time-symmetric nonlinear Schrödinger equations, Stud. Appl. Math., 133 (2014), 422-440.  doi: 10.1111/sapm.12063.  Google Scholar

[12]

J. P. DiasM. M. Figueira and V. V. Konotop, The Cauchy problem for coupled nonlinear Schrödinger equations with linear damping: local and global existence and blow up of solutions, Chin. Ann. Math., 37 (2016), 665-682.  doi: 10.1007/s11401-016-1006-0.  Google Scholar

[13]

L. Di Menza, Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain, (English summary), Numer. Funct. Anal. Optim., 18 (1997), 759-775.  doi: 10.1080/01630569708816790.  Google Scholar

[14]

R. Driben and B. A. Malomed, Stability of solitons in parity-time-symmetric couplers, Opt. Lett., 36 (2011), 4323-4325.  doi: 10.1364/OL.36.004323.  Google Scholar

[15]

M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schödinger equation, Math. Comput. Simul., 56 (2001), 547-562.  doi: 10.1016/S0378-4754(01)00324-X.  Google Scholar

[16]

A. Jüngel and R.-M. Weishäupl, Blow up in two-component nonlinear Schrödinger systems with an external driven field, Math. Models Methods Appl. Sci., 23 (2013), 1699-1727.  doi: 10.1142/S0218202513500206.  Google Scholar

[17]

V. V. Konotop, J. Yang and D. A. Zezyulin, Nonlinear waves in PT–symmetric system, Rev. Mod., 88 (2016), 035002(59). Google Scholar

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Springer, LLC, 2009.  Google Scholar

[19]

D. E. PelinovskyD. A. Zezyulin and V. V. Konotop, Global existence of solutions to coupled PT–symmetric nonlinear Schrodiger equations, Int. J. Theor. Phys., 54 (2015), 3920-3931.  doi: 10.1007/s10773-014-2422-0.  Google Scholar

[20]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, New-York, 1999.  Google Scholar

[21]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical nonlinear Schrödinger equation, J. Comp. Phys., 55 (2006), 203-230.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576.   Google Scholar

[23]

C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J. Comput. Phys., 227 (2007), 537-556.  doi: 10.1016/j.jcp.2007.08.004.  Google Scholar

show all references

References:
[1]

G. P. Agrawal, Applications of Nonlinear Fiber Optics, Optics and Photonics Series 2nd edition, Academic Press, Elsevier, (2008). Google Scholar

[2]

X. AntoineC. Besse and S. Descombes, Artificial boundary conditions for one–dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), 2272-2293.  doi: 10.1137/040606983.  Google Scholar

[3]

V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation, Wave Motion, 14 (1991), 123-128.  doi: 10.1016/0165-2125(91)90053-Q.  Google Scholar

[4]

C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007), 947-1018.  doi: 10.1088/0034-4885/70/6/R03.  Google Scholar

[5]

C. M. Bender, B. Berntson, D. Parker and E. Samuel, Observation of PT phase transition in a simple mechanical system, Am. J. Phys., 81 (2013), 173. doi: 10.1119/1.4789549.  Google Scholar

[6]

C. M. Bender and S. Borttcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}-$symmetry, Phys. Rev. Lett., 80 (1998), 5243-5246.  doi: 10.1103/PhysRevLett.80.5243.  Google Scholar

[7]

E. DestylS. P. Nuiro and P. Poullet, On the global behavior of solutions of a coupled system of nonlinear Schrödinger equation, Stud. Appl. Math., 138 (2017), 227-244.  doi: 10.1111/sapm.12150.  Google Scholar

[8]

E. DestylS. P. NuiroD. E. Pelinovsky and P. Poullet, Coupled pendula chains under parametric $\mathcal{PT}$-symmetric driving force, Phys. Lett. A, 381 (2017), 3884-3892.  doi: 10.1016/j.physleta.2017.10.021.  Google Scholar

[9]

E. DestylS. P. Nuiro and P. Poullet, Critical blow up in coupled Parity-Time-symmetric nonlinear Schrödinger equations, AIMS Math., 2 (2017), 195-206.   Google Scholar

[10]

E. Destyl, Modélisation et Analyse de Systèmes D'équations de Schrödinger non Linéaire, Thèse de doctorat de l'Universté des Antilles, 28 septembre 2018, Pointe-à-Pitre, Guadeloupe. Google Scholar

[11]

J.-P. DiasM. FigueiraV. V. Konotop and D. A. Zezyulin, Supercritical blow up in coupled parity-time-symmetric nonlinear Schrödinger equations, Stud. Appl. Math., 133 (2014), 422-440.  doi: 10.1111/sapm.12063.  Google Scholar

[12]

J. P. DiasM. M. Figueira and V. V. Konotop, The Cauchy problem for coupled nonlinear Schrödinger equations with linear damping: local and global existence and blow up of solutions, Chin. Ann. Math., 37 (2016), 665-682.  doi: 10.1007/s11401-016-1006-0.  Google Scholar

[13]

L. Di Menza, Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain, (English summary), Numer. Funct. Anal. Optim., 18 (1997), 759-775.  doi: 10.1080/01630569708816790.  Google Scholar

[14]

R. Driben and B. A. Malomed, Stability of solitons in parity-time-symmetric couplers, Opt. Lett., 36 (2011), 4323-4325.  doi: 10.1364/OL.36.004323.  Google Scholar

[15]

M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schödinger equation, Math. Comput. Simul., 56 (2001), 547-562.  doi: 10.1016/S0378-4754(01)00324-X.  Google Scholar

[16]

A. Jüngel and R.-M. Weishäupl, Blow up in two-component nonlinear Schrödinger systems with an external driven field, Math. Models Methods Appl. Sci., 23 (2013), 1699-1727.  doi: 10.1142/S0218202513500206.  Google Scholar

[17]

V. V. Konotop, J. Yang and D. A. Zezyulin, Nonlinear waves in PT–symmetric system, Rev. Mod., 88 (2016), 035002(59). Google Scholar

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Springer, LLC, 2009.  Google Scholar

[19]

D. E. PelinovskyD. A. Zezyulin and V. V. Konotop, Global existence of solutions to coupled PT–symmetric nonlinear Schrodiger equations, Int. J. Theor. Phys., 54 (2015), 3920-3931.  doi: 10.1007/s10773-014-2422-0.  Google Scholar

[20]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, New-York, 1999.  Google Scholar

[21]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical nonlinear Schrödinger equation, J. Comp. Phys., 55 (2006), 203-230.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576.   Google Scholar

[23]

C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J. Comput. Phys., 227 (2007), 537-556.  doi: 10.1016/j.jcp.2007.08.004.  Google Scholar

Figure 1.  Convergence for the scheme using the fixed point iteration method
Figure 2.  Convergence in time of the scheme
Figure 3.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ (celestial blue) for initial condition (2) such that $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 4.  Modulus squared of the computed density (1st component in red, 2nd one in blue) at several times, in the Manakov case, for an initial condition (2) such that $ (A, B)\! = \!(0.1, 0.2), \, (\kappa, \gamma)\! = \!(1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 5.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (green) et $ D(t) $ (celestial blue) for an initial condition (2) such that $ (A, B) = (5, 1) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 6.  Behavior of $ S_1 $ versus time for initial condition (2) such that $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 7.  Surfaces of the position density $ |u(x, t)|^2 $ (red) and $ |v(x, t)|^2 $ (blue) at time $ t = 0.0 $, $ t = 0.032 $ (upper row) and for $ t = 0.05 $, $ t = 0.062 $ (lower row) in the Manakov case, for the initial condition (2) such that $ (A, B) = (5, 1) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 8.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) and $ D(t) $ celestial blue) for initial condition (2) such that $ (A, B) = (1.5, 1.5) $, $ (\kappa, \gamma) = (3, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 9.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ (celestial blue) for initial condition (2) such that $ (A, B) = (1.5, 1.5) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 10.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ (celestial blue) for initial condition {(2)} with $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = 1 \neq g = 0.5 $
Figure 11.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ { (celestial blue)} for initial conditions {(2)} with $ (A, B) = (1, 3) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = 1 \neq g = 0.5 $
Figure 12.  Surfaces of the position density $ |u(x, t)|^2 $ (red) and $ |v(x, t)|^2 $ (blue) at time $ t = 0.0 $, $ t = 5.014 $ (upper row) and for $ t = 9.718 $, $ t = 10.0 $ (lower row) in the general model case, for the initial condition (2) with $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 13.  Surfaces of the position density $ |u(x, t)|^2 $ (red) and $ |v(x, t)|^2 $ (blue) at time $ t = 0.0 $, $ t = 3.860 $ (upper row) and for $ t = 4.708 $, $ t = 4.746 $ (lower row) in the general model case, for initial condition { (2)} with $ (A, B) = (1, 3) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = 1 \neq g = 0.5 $
Table 1.  Convergence for the fixed point iteration method
$s$ Spatial step Error Order $s$ Spatial step Error Order
$0$ $4.0\times 10^{-3}$ $4.0\times10^{-8}$ $0$ $4.0\times 10^{-3}$ $6.15\times 10^{-8}$
$1$ $8.0\times10^{-3}$ $2.0\times 10^{-7}$ 2.32 $1$ $8.0\times 10^{-3}$ $3.07\times 10^{-7}$ 2.32
$2$ $1.6\times 10^{-2}$ $8.4\times 10^{-7}$ 2.07 $2$ $1.6\times 10^{-2}$ $1.29\times 10^{-6}$ 2.07
$3$ $3.2\times 10^{-2}$ $3.4\times 10^{-6}$ 2.01 $3$ $3.2\times 10^{-2}$ $5.22\times 10^{-6}$ 2.01
(a) Results for the 1st equation (b) Results for the 2nd equation
$s$ Spatial step Error Order $s$ Spatial step Error Order
$0$ $4.0\times 10^{-3}$ $4.0\times10^{-8}$ $0$ $4.0\times 10^{-3}$ $6.15\times 10^{-8}$
$1$ $8.0\times10^{-3}$ $2.0\times 10^{-7}$ 2.32 $1$ $8.0\times 10^{-3}$ $3.07\times 10^{-7}$ 2.32
$2$ $1.6\times 10^{-2}$ $8.4\times 10^{-7}$ 2.07 $2$ $1.6\times 10^{-2}$ $1.29\times 10^{-6}$ 2.07
$3$ $3.2\times 10^{-2}$ $3.4\times 10^{-6}$ 2.01 $3$ $3.2\times 10^{-2}$ $5.22\times 10^{-6}$ 2.01
(a) Results for the 1st equation (b) Results for the 2nd equation
Table 2.  $\ell^2(]0, T[; \ell^2(I))$-error behavior of the scheme using the fixed point iteration method
$ s $ Time step Error Order $s$ Time step Error Order
$ 0 $ $ 4.0\times10^{-4} $ $ 1.30 \times 10^{-6} $ $0$ $4.0\times 10^{-4}$ $1.04\times 10^{-6}$
$ 1 $ $ 8.0\times10^{-4} $ $ 4.30\times10^{-6} $ 1.62 $1$ $8.0\times 10^{-4}$ $3.22\times 10^{-6}$ 1.62
$ 2 $ $ 1.6\times10^{-3} $ $ 1.06\times10^{-5} $ 1.30 $2$ $1.6\times 10^{-3}$ $7.96\times 10^{-6}$ 1.30
$ 3 $ $ 3.2\times10^{-3} $ $ 1.98\times 10^{-4} $ 4.22 $3$ $3.2\times 10^{-3}$ $2.52\times 10^{-5}$ 1.66
(a) Results for the 1st equation (b) Results for the 2nd equation
$ s $ Time step Error Order $s$ Time step Error Order
$ 0 $ $ 4.0\times10^{-4} $ $ 1.30 \times 10^{-6} $ $0$ $4.0\times 10^{-4}$ $1.04\times 10^{-6}$
$ 1 $ $ 8.0\times10^{-4} $ $ 4.30\times10^{-6} $ 1.62 $1$ $8.0\times 10^{-4}$ $3.22\times 10^{-6}$ 1.62
$ 2 $ $ 1.6\times10^{-3} $ $ 1.06\times10^{-5} $ 1.30 $2$ $1.6\times 10^{-3}$ $7.96\times 10^{-6}$ 1.30
$ 3 $ $ 3.2\times10^{-3} $ $ 1.98\times 10^{-4} $ 4.22 $3$ $3.2\times 10^{-3}$ $2.52\times 10^{-5}$ 1.66
(a) Results for the 1st equation (b) Results for the 2nd equation
Table 3.  $\ell^2(]0, T[;\ell^2(I))$-error behavior of the scheme with the Newton method
$s$ Time step Error Order $s$ Time step Error Order
$0$ $4.0 \times 10^{-4}$ $9.88\times 10^{-9}$ $0$ $4.0\times10^{-4}$ $1.47\times 10^{-8}$
$1$ $8.0\times 10^{-4}$ $4.14\times 10^{-8}$ 2.06 $1$ $8.0\times 10^{-4}$ $5.75\times 10^{-8}$ 1.97
$2$ $1.6\times 10^{-3}$ $1.73\times 10^{-7}$ 2.06 $2$ $1.6\times 10^{-3}$ $2.28\times 10^{-7}$ 1.99
$3$ $3.2\times 10^{-3}$ $7.79\times 10^{-7}$ 2.17 $3$ $3.2\times 10^{-3}$ $1.01\times 10^{-6}$ 2.140
(a) Results for the 1st equation (b) Results for the 2nd equation
$s$ Time step Error Order $s$ Time step Error Order
$0$ $4.0 \times 10^{-4}$ $9.88\times 10^{-9}$ $0$ $4.0\times10^{-4}$ $1.47\times 10^{-8}$
$1$ $8.0\times 10^{-4}$ $4.14\times 10^{-8}$ 2.06 $1$ $8.0\times 10^{-4}$ $5.75\times 10^{-8}$ 1.97
$2$ $1.6\times 10^{-3}$ $1.73\times 10^{-7}$ 2.06 $2$ $1.6\times 10^{-3}$ $2.28\times 10^{-7}$ 1.99
$3$ $3.2\times 10^{-3}$ $7.79\times 10^{-7}$ 2.17 $3$ $3.2\times 10^{-3}$ $1.01\times 10^{-6}$ 2.140
(a) Results for the 1st equation (b) Results for the 2nd equation
[1]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[2]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[3]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[4]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[5]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020082

[6]

Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051

[7]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[8]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[9]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[10]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[11]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[12]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[13]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[14]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[15]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[16]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[17]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[18]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[19]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[20]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (18)
  • HTML views (35)
  • Cited by (0)

[Back to Top]