doi: 10.3934/dcdss.2020411

Numerical simulations of parity–time symmetric nonlinear Schrödinger equations in critical case

Laboratoire de Mathématiques Informatique et Applications, Université des Antilles, BP 250, F-97157 Pointe à Pitre cedex, Guadeloupe FWI

* Corresponding author: E. Destyl, edes.destyl@univ-antilles.fr

Received  April 2020 Revised  May 2020 Published  July 2020

In this paper, we study the solution behavior of two coupled non–linear Schrödinger equations (CNLS) in the critical case, where one equation includes gain, while the other includes losses. Next, we present two numerical methods for solving the CNLS equations, for which we have made a comparison. These numerical experiments permit to illustrate other theoretical results proven by the authors [11]. We also obtain several numerical results for different non–linearities and investigate on the value of the blow up time relatively to some parameters.

Citation: Edès Destyl, Jacques Laminie, Paul Nuiro, Pascal Poullet. Numerical simulations of parity–time symmetric nonlinear Schrödinger equations in critical case. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020411
References:
[1]

G. P. Agrawal, Applications of Nonlinear Fiber Optics, Optics and Photonics Series 2nd edition, Academic Press, Elsevier, (2008). Google Scholar

[2]

X. AntoineC. Besse and S. Descombes, Artificial boundary conditions for one–dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), 2272-2293.  doi: 10.1137/040606983.  Google Scholar

[3]

V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation, Wave Motion, 14 (1991), 123-128.  doi: 10.1016/0165-2125(91)90053-Q.  Google Scholar

[4]

C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007), 947-1018.  doi: 10.1088/0034-4885/70/6/R03.  Google Scholar

[5]

C. M. Bender, B. Berntson, D. Parker and E. Samuel, Observation of PT phase transition in a simple mechanical system, Am. J. Phys., 81 (2013), 173. doi: 10.1119/1.4789549.  Google Scholar

[6]

C. M. Bender and S. Borttcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}-$symmetry, Phys. Rev. Lett., 80 (1998), 5243-5246.  doi: 10.1103/PhysRevLett.80.5243.  Google Scholar

[7]

E. DestylS. P. Nuiro and P. Poullet, On the global behavior of solutions of a coupled system of nonlinear Schrödinger equation, Stud. Appl. Math., 138 (2017), 227-244.  doi: 10.1111/sapm.12150.  Google Scholar

[8]

E. DestylS. P. NuiroD. E. Pelinovsky and P. Poullet, Coupled pendula chains under parametric $\mathcal{PT}$-symmetric driving force, Phys. Lett. A, 381 (2017), 3884-3892.  doi: 10.1016/j.physleta.2017.10.021.  Google Scholar

[9]

E. DestylS. P. Nuiro and P. Poullet, Critical blow up in coupled Parity-Time-symmetric nonlinear Schrödinger equations, AIMS Math., 2 (2017), 195-206.   Google Scholar

[10]

E. Destyl, Modélisation et Analyse de Systèmes D'équations de Schrödinger non Linéaire, Thèse de doctorat de l'Universté des Antilles, 28 septembre 2018, Pointe-à-Pitre, Guadeloupe. Google Scholar

[11]

J.-P. DiasM. FigueiraV. V. Konotop and D. A. Zezyulin, Supercritical blow up in coupled parity-time-symmetric nonlinear Schrödinger equations, Stud. Appl. Math., 133 (2014), 422-440.  doi: 10.1111/sapm.12063.  Google Scholar

[12]

J. P. DiasM. M. Figueira and V. V. Konotop, The Cauchy problem for coupled nonlinear Schrödinger equations with linear damping: local and global existence and blow up of solutions, Chin. Ann. Math., 37 (2016), 665-682.  doi: 10.1007/s11401-016-1006-0.  Google Scholar

[13]

L. Di Menza, Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain, (English summary), Numer. Funct. Anal. Optim., 18 (1997), 759-775.  doi: 10.1080/01630569708816790.  Google Scholar

[14]

R. Driben and B. A. Malomed, Stability of solitons in parity-time-symmetric couplers, Opt. Lett., 36 (2011), 4323-4325.  doi: 10.1364/OL.36.004323.  Google Scholar

[15]

M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schödinger equation, Math. Comput. Simul., 56 (2001), 547-562.  doi: 10.1016/S0378-4754(01)00324-X.  Google Scholar

[16]

A. Jüngel and R.-M. Weishäupl, Blow up in two-component nonlinear Schrödinger systems with an external driven field, Math. Models Methods Appl. Sci., 23 (2013), 1699-1727.  doi: 10.1142/S0218202513500206.  Google Scholar

[17]

V. V. Konotop, J. Yang and D. A. Zezyulin, Nonlinear waves in PT–symmetric system, Rev. Mod., 88 (2016), 035002(59). Google Scholar

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Springer, LLC, 2009.  Google Scholar

[19]

D. E. PelinovskyD. A. Zezyulin and V. V. Konotop, Global existence of solutions to coupled PT–symmetric nonlinear Schrodiger equations, Int. J. Theor. Phys., 54 (2015), 3920-3931.  doi: 10.1007/s10773-014-2422-0.  Google Scholar

[20]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, New-York, 1999.  Google Scholar

[21]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical nonlinear Schrödinger equation, J. Comp. Phys., 55 (2006), 203-230.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576.   Google Scholar

[23]

C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J. Comput. Phys., 227 (2007), 537-556.  doi: 10.1016/j.jcp.2007.08.004.  Google Scholar

show all references

References:
[1]

G. P. Agrawal, Applications of Nonlinear Fiber Optics, Optics and Photonics Series 2nd edition, Academic Press, Elsevier, (2008). Google Scholar

[2]

X. AntoineC. Besse and S. Descombes, Artificial boundary conditions for one–dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43 (2006), 2272-2293.  doi: 10.1137/040606983.  Google Scholar

[3]

V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation, Wave Motion, 14 (1991), 123-128.  doi: 10.1016/0165-2125(91)90053-Q.  Google Scholar

[4]

C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007), 947-1018.  doi: 10.1088/0034-4885/70/6/R03.  Google Scholar

[5]

C. M. Bender, B. Berntson, D. Parker and E. Samuel, Observation of PT phase transition in a simple mechanical system, Am. J. Phys., 81 (2013), 173. doi: 10.1119/1.4789549.  Google Scholar

[6]

C. M. Bender and S. Borttcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}-$symmetry, Phys. Rev. Lett., 80 (1998), 5243-5246.  doi: 10.1103/PhysRevLett.80.5243.  Google Scholar

[7]

E. DestylS. P. Nuiro and P. Poullet, On the global behavior of solutions of a coupled system of nonlinear Schrödinger equation, Stud. Appl. Math., 138 (2017), 227-244.  doi: 10.1111/sapm.12150.  Google Scholar

[8]

E. DestylS. P. NuiroD. E. Pelinovsky and P. Poullet, Coupled pendula chains under parametric $\mathcal{PT}$-symmetric driving force, Phys. Lett. A, 381 (2017), 3884-3892.  doi: 10.1016/j.physleta.2017.10.021.  Google Scholar

[9]

E. DestylS. P. Nuiro and P. Poullet, Critical blow up in coupled Parity-Time-symmetric nonlinear Schrödinger equations, AIMS Math., 2 (2017), 195-206.   Google Scholar

[10]

E. Destyl, Modélisation et Analyse de Systèmes D'équations de Schrödinger non Linéaire, Thèse de doctorat de l'Universté des Antilles, 28 septembre 2018, Pointe-à-Pitre, Guadeloupe. Google Scholar

[11]

J.-P. DiasM. FigueiraV. V. Konotop and D. A. Zezyulin, Supercritical blow up in coupled parity-time-symmetric nonlinear Schrödinger equations, Stud. Appl. Math., 133 (2014), 422-440.  doi: 10.1111/sapm.12063.  Google Scholar

[12]

J. P. DiasM. M. Figueira and V. V. Konotop, The Cauchy problem for coupled nonlinear Schrödinger equations with linear damping: local and global existence and blow up of solutions, Chin. Ann. Math., 37 (2016), 665-682.  doi: 10.1007/s11401-016-1006-0.  Google Scholar

[13]

L. Di Menza, Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain, (English summary), Numer. Funct. Anal. Optim., 18 (1997), 759-775.  doi: 10.1080/01630569708816790.  Google Scholar

[14]

R. Driben and B. A. Malomed, Stability of solitons in parity-time-symmetric couplers, Opt. Lett., 36 (2011), 4323-4325.  doi: 10.1364/OL.36.004323.  Google Scholar

[15]

M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schödinger equation, Math. Comput. Simul., 56 (2001), 547-562.  doi: 10.1016/S0378-4754(01)00324-X.  Google Scholar

[16]

A. Jüngel and R.-M. Weishäupl, Blow up in two-component nonlinear Schrödinger systems with an external driven field, Math. Models Methods Appl. Sci., 23 (2013), 1699-1727.  doi: 10.1142/S0218202513500206.  Google Scholar

[17]

V. V. Konotop, J. Yang and D. A. Zezyulin, Nonlinear waves in PT–symmetric system, Rev. Mod., 88 (2016), 035002(59). Google Scholar

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Springer, LLC, 2009.  Google Scholar

[19]

D. E. PelinovskyD. A. Zezyulin and V. V. Konotop, Global existence of solutions to coupled PT–symmetric nonlinear Schrodiger equations, Int. J. Theor. Phys., 54 (2015), 3920-3931.  doi: 10.1007/s10773-014-2422-0.  Google Scholar

[20]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, New-York, 1999.  Google Scholar

[21]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical nonlinear Schrödinger equation, J. Comp. Phys., 55 (2006), 203-230.  doi: 10.1016/0021-9991(84)90003-2.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576.   Google Scholar

[23]

C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J. Comput. Phys., 227 (2007), 537-556.  doi: 10.1016/j.jcp.2007.08.004.  Google Scholar

Figure 1.  Convergence for the scheme using the fixed point iteration method
Figure 2.  Convergence in time of the scheme
Figure 3.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ (celestial blue) for initial condition (2) such that $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 4.  Modulus squared of the computed density (1st component in red, 2nd one in blue) at several times, in the Manakov case, for an initial condition (2) such that $ (A, B)\! = \!(0.1, 0.2), \, (\kappa, \gamma)\! = \!(1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 5.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (green) et $ D(t) $ (celestial blue) for an initial condition (2) such that $ (A, B) = (5, 1) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 6.  Behavior of $ S_1 $ versus time for initial condition (2) such that $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 7.  Surfaces of the position density $ |u(x, t)|^2 $ (red) and $ |v(x, t)|^2 $ (blue) at time $ t = 0.0 $, $ t = 0.032 $ (upper row) and for $ t = 0.05 $, $ t = 0.062 $ (lower row) in the Manakov case, for the initial condition (2) such that $ (A, B) = (5, 1) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 8.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) and $ D(t) $ celestial blue) for initial condition (2) such that $ (A, B) = (1.5, 1.5) $, $ (\kappa, \gamma) = (3, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 9.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ (celestial blue) for initial condition (2) such that $ (A, B) = (1.5, 1.5) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 10.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ (celestial blue) for initial condition {(2)} with $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = 1 \neq g = 0.5 $
Figure 11.  $ ||u||_{L^2} $ (green), $ ||v||_{L^2} $ (blue), $ ||\nabla u||_{L^2}^2 $ (yellow), $ ||\nabla v||_{L^2}^2 $ (brown), $ ||u||_{L^{\infty}}^2 $ (black) and $ ||v||_{L^{\infty}}^2 $ (red), $ S_1(t) $ (magenta), $ Q(t) $ (purple) et $ D(t) $ { (celestial blue)} for initial conditions {(2)} with $ (A, B) = (1, 3) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = 1 \neq g = 0.5 $
Figure 12.  Surfaces of the position density $ |u(x, t)|^2 $ (red) and $ |v(x, t)|^2 $ (blue) at time $ t = 0.0 $, $ t = 5.014 $ (upper row) and for $ t = 9.718 $, $ t = 10.0 $ (lower row) in the general model case, for the initial condition (2) with $ (A, B) = (0.1, 0.2) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = g = 1 $
Figure 13.  Surfaces of the position density $ |u(x, t)|^2 $ (red) and $ |v(x, t)|^2 $ (blue) at time $ t = 0.0 $, $ t = 3.860 $ (upper row) and for $ t = 4.708 $, $ t = 4.746 $ (lower row) in the general model case, for initial condition { (2)} with $ (A, B) = (1, 3) $, $ (\kappa, \gamma) = (1, 0.5) $ and $ g_1 = g_2 = 1 \neq g = 0.5 $
Table 1.  Convergence for the fixed point iteration method
$s$ Spatial step Error Order $s$ Spatial step Error Order
$0$ $4.0\times 10^{-3}$ $4.0\times10^{-8}$ $0$ $4.0\times 10^{-3}$ $6.15\times 10^{-8}$
$1$ $8.0\times10^{-3}$ $2.0\times 10^{-7}$ 2.32 $1$ $8.0\times 10^{-3}$ $3.07\times 10^{-7}$ 2.32
$2$ $1.6\times 10^{-2}$ $8.4\times 10^{-7}$ 2.07 $2$ $1.6\times 10^{-2}$ $1.29\times 10^{-6}$ 2.07
$3$ $3.2\times 10^{-2}$ $3.4\times 10^{-6}$ 2.01 $3$ $3.2\times 10^{-2}$ $5.22\times 10^{-6}$ 2.01
(a) Results for the 1st equation (b) Results for the 2nd equation
$s$ Spatial step Error Order $s$ Spatial step Error Order
$0$ $4.0\times 10^{-3}$ $4.0\times10^{-8}$ $0$ $4.0\times 10^{-3}$ $6.15\times 10^{-8}$
$1$ $8.0\times10^{-3}$ $2.0\times 10^{-7}$ 2.32 $1$ $8.0\times 10^{-3}$ $3.07\times 10^{-7}$ 2.32
$2$ $1.6\times 10^{-2}$ $8.4\times 10^{-7}$ 2.07 $2$ $1.6\times 10^{-2}$ $1.29\times 10^{-6}$ 2.07
$3$ $3.2\times 10^{-2}$ $3.4\times 10^{-6}$ 2.01 $3$ $3.2\times 10^{-2}$ $5.22\times 10^{-6}$ 2.01
(a) Results for the 1st equation (b) Results for the 2nd equation
Table 2.  $\ell^2(]0, T[; \ell^2(I))$-error behavior of the scheme using the fixed point iteration method
$ s $ Time step Error Order $s$ Time step Error Order
$ 0 $ $ 4.0\times10^{-4} $ $ 1.30 \times 10^{-6} $ $0$ $4.0\times 10^{-4}$ $1.04\times 10^{-6}$
$ 1 $ $ 8.0\times10^{-4} $ $ 4.30\times10^{-6} $ 1.62 $1$ $8.0\times 10^{-4}$ $3.22\times 10^{-6}$ 1.62
$ 2 $ $ 1.6\times10^{-3} $ $ 1.06\times10^{-5} $ 1.30 $2$ $1.6\times 10^{-3}$ $7.96\times 10^{-6}$ 1.30
$ 3 $ $ 3.2\times10^{-3} $ $ 1.98\times 10^{-4} $ 4.22 $3$ $3.2\times 10^{-3}$ $2.52\times 10^{-5}$ 1.66
(a) Results for the 1st equation (b) Results for the 2nd equation
$ s $ Time step Error Order $s$ Time step Error Order
$ 0 $ $ 4.0\times10^{-4} $ $ 1.30 \times 10^{-6} $ $0$ $4.0\times 10^{-4}$ $1.04\times 10^{-6}$
$ 1 $ $ 8.0\times10^{-4} $ $ 4.30\times10^{-6} $ 1.62 $1$ $8.0\times 10^{-4}$ $3.22\times 10^{-6}$ 1.62
$ 2 $ $ 1.6\times10^{-3} $ $ 1.06\times10^{-5} $ 1.30 $2$ $1.6\times 10^{-3}$ $7.96\times 10^{-6}$ 1.30
$ 3 $ $ 3.2\times10^{-3} $ $ 1.98\times 10^{-4} $ 4.22 $3$ $3.2\times 10^{-3}$ $2.52\times 10^{-5}$ 1.66
(a) Results for the 1st equation (b) Results for the 2nd equation
Table 3.  $\ell^2(]0, T[;\ell^2(I))$-error behavior of the scheme with the Newton method
$s$ Time step Error Order $s$ Time step Error Order
$0$ $4.0 \times 10^{-4}$ $9.88\times 10^{-9}$ $0$ $4.0\times10^{-4}$ $1.47\times 10^{-8}$
$1$ $8.0\times 10^{-4}$ $4.14\times 10^{-8}$ 2.06 $1$ $8.0\times 10^{-4}$ $5.75\times 10^{-8}$ 1.97
$2$ $1.6\times 10^{-3}$ $1.73\times 10^{-7}$ 2.06 $2$ $1.6\times 10^{-3}$ $2.28\times 10^{-7}$ 1.99
$3$ $3.2\times 10^{-3}$ $7.79\times 10^{-7}$ 2.17 $3$ $3.2\times 10^{-3}$ $1.01\times 10^{-6}$ 2.140
(a) Results for the 1st equation (b) Results for the 2nd equation
$s$ Time step Error Order $s$ Time step Error Order
$0$ $4.0 \times 10^{-4}$ $9.88\times 10^{-9}$ $0$ $4.0\times10^{-4}$ $1.47\times 10^{-8}$
$1$ $8.0\times 10^{-4}$ $4.14\times 10^{-8}$ 2.06 $1$ $8.0\times 10^{-4}$ $5.75\times 10^{-8}$ 1.97
$2$ $1.6\times 10^{-3}$ $1.73\times 10^{-7}$ 2.06 $2$ $1.6\times 10^{-3}$ $2.28\times 10^{-7}$ 1.99
$3$ $3.2\times 10^{-3}$ $7.79\times 10^{-7}$ 2.17 $3$ $3.2\times 10^{-3}$ $1.01\times 10^{-6}$ 2.140
(a) Results for the 1st equation (b) Results for the 2nd equation
[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[6]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[11]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[14]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[15]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[16]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[17]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[18]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (47)
  • HTML views (227)
  • Cited by (0)

[Back to Top]