
-
Previous Article
An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law
- DCDS-S Home
- This Issue
-
Next Article
Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term
From quasi-incompressible to semi-compressible fluids
1. | Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic |
2. | Institute of Thermomechanics, Czech Acad. Sci., Dolejškova 5, CZ-18200 Praha 8, Czech Republic |
A new concept of semi-compressible fluids is introduced for slightly compressible visco-elastic fluids (typically rather liquids than gasses) where mass density variations are negligible in some sense, while being directly controlled by pressure which is very small in comparison with the elastic bulk modulus. The physically consistent fully Eulerian models with specific dispersion of pressure-wave speed are devised. This contrasts to the so-called quasi-incompressible fluids which are described not physically consistently and, in fact, only approximate ideally incompressible ones in the limit. After surveying and modifying models for the quasi-incompressible fluids, we eventually devise some fully convective models complying with energy conservation and capturing phenomena as pressure-wave propagation with wave-length (and possibly also pressure) dependent velocity.
References:
[1] |
E. C. Aifantis,
On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30 (1992), 1279-1299.
doi: 10.1016/0020-7225(92)90141-3. |
[2] |
H. Askes and E. C. Aifantis, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Phys. Rev. B, 80 (2009), 195412.
doi: 10.1103/PhysRevB.80.195412. |
[3] |
H. Askes and E. C. Aifantis,
Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Intl. J. Solids Structures, 48 (2011), 1962-1990.
doi: 10.1016/j.ijsolstr.2011.03.006. |
[4] |
C. Bardos, F. Golse and D. Levermore,
Fluid dynamic limits of kinetic equations I: Formal derivations, J. Stat. Phys., 63 (1991), 323-344.
|
[5] |
A. Bardow and H. C. Öttinger,
Consequences of the Brenner modification to the Navier-Stokes equations for dynamic light scattering, Physica A, 373 (2007), 88-96.
doi: 10.1016/j.physa.2006.05.047. |
[6] |
H. Bellout, F. Bloom and J. Nečas,
Phenomenological behavior of multipolar viscous fluids, Qarterly Appl. Math., 50 (1992), 559-583.
doi: 10.1090/qam/1178435. |
[7] |
A. Berezovski and P. Ván, Internal Variables in Thermoelasticity, Springer, Switzerland, 2017. |
[8] |
D. Bernoulli, Hydrodynamica, Sive De Viribus Et Motibus Fluidorum Cb ommentarii, 1738. Google Scholar |
[9] |
L. Berselli,
Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations, Math. Meth. Appl. Sci., 22 (1999), 1079-1085.
doi: 10.1002/(SICI)1099-1476(19990910)22:13<1079::AID-MMA71>3.0.CO; 2-4. |
[10] |
L. Berselli and G. Galdi,
Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585-3595.
doi: 10.1090/S0002-9939-02-06697-2. |
[11] |
L. C. Berselli and S. Spirito, On the construction of suitable weak solutions to the 3D Navier-Stokes equations in a bounded domain by an artificial compressibility method, Comm. Contemporary Math., 20 (2018), 1650064.
doi: 10.1142/S0219199716500644. |
[12] |
D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge Univ. Press, 1993.
doi: 10.1017/CBO9780511599965.![]() ![]() |
[13] |
D. V. Boger,
A highly elastic constant-viscosity fluid, J. Non-Newtonian Fluid Mechanics, 3 (1977), 87-91.
doi: 10.1016/0377-0257(77)80014-1. |
[14] |
H. Brenner,
Kinematics of volume transport, Physica A, 349 (2005), 11-59.
doi: 10.1016/j.physa.2004.10.033. |
[15] |
H. Brenner,
Fluid mechanics revisited, Physica A, 370 (2006), 190-224.
doi: 10.1016/j.physa.2006.03.066. |
[16] |
M. Bulíček, E. Feireisl and J. Málek,
On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665-4681.
doi: 10.1088/1361-6544/ab3614. |
[17] |
M. Bulíček, J. Málek, V. Průša and E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Mathematical Analysis in Fluid Mechanics–selected Recent Results, 25–51, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018.
doi: 10.1090/conm/710/14362. |
[18] |
M. Bulíček, J. Málek and K. Rajagopal,
Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.
doi: 10.1512/iumj.2007.56.2997. |
[19] |
J. Burczak, J. Málek and P. Minakowski,
Stress-diffusive regularization of non-dissipative rate-type materials, Disc. Cont. Dynam. Systems - S, 10 (2017), 1233-1256.
doi: 10.3934/dcdss.2017067. |
[20] |
C.-T. A. Chen and F. J. Millero,
Speed of sound in seawater at high pressures, J. Acoustical Soc. Amer., 62 (1977), 1129-1135.
doi: 10.1121/1.381646. |
[21] |
R. M. Chen, W. Layton and M. McLaughlin, Analysis of variable-step/non-autonomous artificial compression methods, J. Math. Fluid Mech., 21 (2019), Paper No. 30, 20 pp.
doi: 10.1007/s00021-019-0429-2. |
[22] |
A. Chorin,
A numerical method for solving incompressible viscous flow problems, J. Computational Physics, 2 (1967), 12-26.
doi: 10.1016/0021-9991(67)90037-X. |
[23] |
A. Chorin,
Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.
doi: 10.1090/S0025-5718-1968-0242392-2. |
[24] |
M. E. Denson Jr, Longitudinal waves through the Earth's core, Bull. Seismological Soc. Amer., 42 (1952), 119-134. Google Scholar |
[25] |
D. Donatelli and P. Marcati,
A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3D, J. Hyperbolic Diff. Eqns., 3 (2006), 575-588.
doi: 10.1142/S0219891606000914. |
[26] |
D. Donatelli and S. Spirito,
Weak solutions of Navier-Stokes equations constructed by artificial compressibility method are suitable, J. Hyperbolic Diff. Eqns., 8 (2011), 101-113.
doi: 10.1142/S0219891611002330. |
[27] |
J. Engelbrecht, A. Berezovski, F. Pastrone and M. Braun,
Waves in microstructured materials and dispersion, Phil. Mag., 85 (2005), 4127-4141.
doi: 10.1080/14786430500362769. |
[28] |
A. Eringen, On differential equations of nonlinear elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710. Google Scholar |
[29] |
E. Feireisl, Y. Lu and J. Málek,
On PDE analysis of flows of quasi-incompressible fluids, Zeit. angew. Math. Mech., 96 (2016), 491-508.
doi: 10.1002/zamm.201400229. |
[30] |
E. Feireisl and A. Novotnỳ, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser, Basel, 2009.
doi: 10.1007/978-3-7643-8843-0. |
[31] |
E. Feireisl and A. Vasseur, New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner, New Directions in Mathematical Fluid Mechanics, 153–179, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010. |
[32] |
R. Fine and F. Millero,
Compressibility of water as a function of temperature and pressure, J. Chem. Phys., 59 (1973), 5529-5536.
doi: 10.1063/1.1679903. |
[33] |
E. Fried and M. Gurtin, Second-gradient Fluids: A Theory for Incompressible Flows at Small Length Scales, Technical Report TAM Reports 1064, Dept. Theoretical & Appl. Mech., 2005. Google Scholar |
[34] |
E. Fried and M. Gurtin,
Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Archive Ration. Mech. Anal., 182 (2006), 513-554.
doi: 10.1007/s00205-006-0015-7. |
[35] |
B. Gutenberg, Wave velocities in the Earth's core, Bull. Seismological Soc. of America, 48 (1958), 301-314. Google Scholar |
[36] |
D. James,
Boger fluids, Annu. Rev. Fluid Mech., 41 (2009), 129-142.
doi: 10.1146/annurev.fluid.010908.165125. |
[37] |
M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Sringer, Switzerland, 2019. Google Scholar |
[38] |
M. Lazar, G. A. Maugin and E. C. Aifantis,
On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, Intl. J. Solids Structures, 43 (2006), 1404-1421.
doi: 10.1016/j.ijsolstr.2005.04.027. |
[39] |
J. Lowengrub and L. Truskinovsky,
Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454 (1998), 2617-2654.
doi: 10.1098/rspa.1998.0273. |
[40] |
A. Madeo, P. Neff, E. C. Aifantis, G. Barbagallo and M. V. d'Agostino, On the role of micro-inertia in enriched continuum mechanics, Proc. R. Soc. A, 473 (2017), 17 pp.
doi: 10.1098/rspa.2016.0722. |
[41] |
Y. Marcus, Internal pressure of liquids and solutions, Chem. Rev., 113 (2013), 6536–6551. Google Scholar |
[42] |
F. J. Millero, C.-T. Chen, A. Bradshaw and K. Schleicher, A new high pressure equation of state for seawater, Deep-Sea Research, 27 (1980), 255-264. Google Scholar |
[43] |
K. G. Nayar, M. H. Sharqawy, L. D. Banchik and J. H. Lienhard V,
Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination, 390 (2016), 1-24.
doi: 10.1016/j.desal.2016.02.024. |
[44] |
J. Nečas, A. Novotnỳ and M. Šilhavỳ,
Global solution to the ideal compressible heat conductive multipolar fluid, Comment. Math. Univ. Carolinae, 30 (1989), 551-564.
|
[45] |
J. Nečas and M. Růžička,
Global solution to the incompressible viscous-multipolar material problem, J. Elasticity, 29 (1992), 175-202.
doi: 10.1007/BF00044516. |
[46] |
A. P. Oskolkov,
A small-parameter quasi-linear parabolic system approximating the Navier-Stokes system, J. Math. Sci., 1 (1973), 452-470.
doi: 10.1007/BF01084587. |
[47] |
H. C. Öttinger, H. Struchtrup and M. Liu, Inconsistency of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E, 80 (2009), 056303. Google Scholar |
[48] |
P. Podio-Guidugli,
Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997), 103-124.
doi: 10.1007/BF01782609. |
[49] |
A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations, Springer, Wiesbaden, 1997.
doi: 10.1007/978-3-663-11171-9. |
[50] |
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. Google Scholar |
[51] |
D. Schnack, Lectures in Magnetohydrodynamics, Springer, Berlin, 2009.
doi: 10.1007/978-3-642-00688-3. |
[52] |
R. Temam,
Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Archive Ration. Mech. Anal., 32 (1969), 135-153.
doi: 10.1007/BF00247678. |
[53] |
R. Temam, Navier-Stokes Equations – Theory and Numerical Analysis, North-Holland, Amsterdam, 1977. |
[54] |
G. Tomassetti, An interpretation of Temam's stabilization term in the quasi-incompressible Navier-Stokes system, 2019., Preprint, arXiv: 1909.11168. Google Scholar |
[55] |
P. Ván, M. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilib. Thermodyn., 42 (2017), 133-152. Google Scholar |
[56] |
W. Wagner and A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Reference Data, 31 (2002), 387–535. Google Scholar |
show all references
References:
[1] |
E. C. Aifantis,
On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30 (1992), 1279-1299.
doi: 10.1016/0020-7225(92)90141-3. |
[2] |
H. Askes and E. C. Aifantis, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Phys. Rev. B, 80 (2009), 195412.
doi: 10.1103/PhysRevB.80.195412. |
[3] |
H. Askes and E. C. Aifantis,
Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Intl. J. Solids Structures, 48 (2011), 1962-1990.
doi: 10.1016/j.ijsolstr.2011.03.006. |
[4] |
C. Bardos, F. Golse and D. Levermore,
Fluid dynamic limits of kinetic equations I: Formal derivations, J. Stat. Phys., 63 (1991), 323-344.
|
[5] |
A. Bardow and H. C. Öttinger,
Consequences of the Brenner modification to the Navier-Stokes equations for dynamic light scattering, Physica A, 373 (2007), 88-96.
doi: 10.1016/j.physa.2006.05.047. |
[6] |
H. Bellout, F. Bloom and J. Nečas,
Phenomenological behavior of multipolar viscous fluids, Qarterly Appl. Math., 50 (1992), 559-583.
doi: 10.1090/qam/1178435. |
[7] |
A. Berezovski and P. Ván, Internal Variables in Thermoelasticity, Springer, Switzerland, 2017. |
[8] |
D. Bernoulli, Hydrodynamica, Sive De Viribus Et Motibus Fluidorum Cb ommentarii, 1738. Google Scholar |
[9] |
L. Berselli,
Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations, Math. Meth. Appl. Sci., 22 (1999), 1079-1085.
doi: 10.1002/(SICI)1099-1476(19990910)22:13<1079::AID-MMA71>3.0.CO; 2-4. |
[10] |
L. Berselli and G. Galdi,
Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585-3595.
doi: 10.1090/S0002-9939-02-06697-2. |
[11] |
L. C. Berselli and S. Spirito, On the construction of suitable weak solutions to the 3D Navier-Stokes equations in a bounded domain by an artificial compressibility method, Comm. Contemporary Math., 20 (2018), 1650064.
doi: 10.1142/S0219199716500644. |
[12] |
D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge Univ. Press, 1993.
doi: 10.1017/CBO9780511599965.![]() ![]() |
[13] |
D. V. Boger,
A highly elastic constant-viscosity fluid, J. Non-Newtonian Fluid Mechanics, 3 (1977), 87-91.
doi: 10.1016/0377-0257(77)80014-1. |
[14] |
H. Brenner,
Kinematics of volume transport, Physica A, 349 (2005), 11-59.
doi: 10.1016/j.physa.2004.10.033. |
[15] |
H. Brenner,
Fluid mechanics revisited, Physica A, 370 (2006), 190-224.
doi: 10.1016/j.physa.2006.03.066. |
[16] |
M. Bulíček, E. Feireisl and J. Málek,
On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665-4681.
doi: 10.1088/1361-6544/ab3614. |
[17] |
M. Bulíček, J. Málek, V. Průša and E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Mathematical Analysis in Fluid Mechanics–selected Recent Results, 25–51, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018.
doi: 10.1090/conm/710/14362. |
[18] |
M. Bulíček, J. Málek and K. Rajagopal,
Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.
doi: 10.1512/iumj.2007.56.2997. |
[19] |
J. Burczak, J. Málek and P. Minakowski,
Stress-diffusive regularization of non-dissipative rate-type materials, Disc. Cont. Dynam. Systems - S, 10 (2017), 1233-1256.
doi: 10.3934/dcdss.2017067. |
[20] |
C.-T. A. Chen and F. J. Millero,
Speed of sound in seawater at high pressures, J. Acoustical Soc. Amer., 62 (1977), 1129-1135.
doi: 10.1121/1.381646. |
[21] |
R. M. Chen, W. Layton and M. McLaughlin, Analysis of variable-step/non-autonomous artificial compression methods, J. Math. Fluid Mech., 21 (2019), Paper No. 30, 20 pp.
doi: 10.1007/s00021-019-0429-2. |
[22] |
A. Chorin,
A numerical method for solving incompressible viscous flow problems, J. Computational Physics, 2 (1967), 12-26.
doi: 10.1016/0021-9991(67)90037-X. |
[23] |
A. Chorin,
Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.
doi: 10.1090/S0025-5718-1968-0242392-2. |
[24] |
M. E. Denson Jr, Longitudinal waves through the Earth's core, Bull. Seismological Soc. Amer., 42 (1952), 119-134. Google Scholar |
[25] |
D. Donatelli and P. Marcati,
A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3D, J. Hyperbolic Diff. Eqns., 3 (2006), 575-588.
doi: 10.1142/S0219891606000914. |
[26] |
D. Donatelli and S. Spirito,
Weak solutions of Navier-Stokes equations constructed by artificial compressibility method are suitable, J. Hyperbolic Diff. Eqns., 8 (2011), 101-113.
doi: 10.1142/S0219891611002330. |
[27] |
J. Engelbrecht, A. Berezovski, F. Pastrone and M. Braun,
Waves in microstructured materials and dispersion, Phil. Mag., 85 (2005), 4127-4141.
doi: 10.1080/14786430500362769. |
[28] |
A. Eringen, On differential equations of nonlinear elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710. Google Scholar |
[29] |
E. Feireisl, Y. Lu and J. Málek,
On PDE analysis of flows of quasi-incompressible fluids, Zeit. angew. Math. Mech., 96 (2016), 491-508.
doi: 10.1002/zamm.201400229. |
[30] |
E. Feireisl and A. Novotnỳ, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser, Basel, 2009.
doi: 10.1007/978-3-7643-8843-0. |
[31] |
E. Feireisl and A. Vasseur, New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner, New Directions in Mathematical Fluid Mechanics, 153–179, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010. |
[32] |
R. Fine and F. Millero,
Compressibility of water as a function of temperature and pressure, J. Chem. Phys., 59 (1973), 5529-5536.
doi: 10.1063/1.1679903. |
[33] |
E. Fried and M. Gurtin, Second-gradient Fluids: A Theory for Incompressible Flows at Small Length Scales, Technical Report TAM Reports 1064, Dept. Theoretical & Appl. Mech., 2005. Google Scholar |
[34] |
E. Fried and M. Gurtin,
Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Archive Ration. Mech. Anal., 182 (2006), 513-554.
doi: 10.1007/s00205-006-0015-7. |
[35] |
B. Gutenberg, Wave velocities in the Earth's core, Bull. Seismological Soc. of America, 48 (1958), 301-314. Google Scholar |
[36] |
D. James,
Boger fluids, Annu. Rev. Fluid Mech., 41 (2009), 129-142.
doi: 10.1146/annurev.fluid.010908.165125. |
[37] |
M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Sringer, Switzerland, 2019. Google Scholar |
[38] |
M. Lazar, G. A. Maugin and E. C. Aifantis,
On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, Intl. J. Solids Structures, 43 (2006), 1404-1421.
doi: 10.1016/j.ijsolstr.2005.04.027. |
[39] |
J. Lowengrub and L. Truskinovsky,
Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454 (1998), 2617-2654.
doi: 10.1098/rspa.1998.0273. |
[40] |
A. Madeo, P. Neff, E. C. Aifantis, G. Barbagallo and M. V. d'Agostino, On the role of micro-inertia in enriched continuum mechanics, Proc. R. Soc. A, 473 (2017), 17 pp.
doi: 10.1098/rspa.2016.0722. |
[41] |
Y. Marcus, Internal pressure of liquids and solutions, Chem. Rev., 113 (2013), 6536–6551. Google Scholar |
[42] |
F. J. Millero, C.-T. Chen, A. Bradshaw and K. Schleicher, A new high pressure equation of state for seawater, Deep-Sea Research, 27 (1980), 255-264. Google Scholar |
[43] |
K. G. Nayar, M. H. Sharqawy, L. D. Banchik and J. H. Lienhard V,
Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination, 390 (2016), 1-24.
doi: 10.1016/j.desal.2016.02.024. |
[44] |
J. Nečas, A. Novotnỳ and M. Šilhavỳ,
Global solution to the ideal compressible heat conductive multipolar fluid, Comment. Math. Univ. Carolinae, 30 (1989), 551-564.
|
[45] |
J. Nečas and M. Růžička,
Global solution to the incompressible viscous-multipolar material problem, J. Elasticity, 29 (1992), 175-202.
doi: 10.1007/BF00044516. |
[46] |
A. P. Oskolkov,
A small-parameter quasi-linear parabolic system approximating the Navier-Stokes system, J. Math. Sci., 1 (1973), 452-470.
doi: 10.1007/BF01084587. |
[47] |
H. C. Öttinger, H. Struchtrup and M. Liu, Inconsistency of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E, 80 (2009), 056303. Google Scholar |
[48] |
P. Podio-Guidugli,
Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997), 103-124.
doi: 10.1007/BF01782609. |
[49] |
A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations, Springer, Wiesbaden, 1997.
doi: 10.1007/978-3-663-11171-9. |
[50] |
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. Google Scholar |
[51] |
D. Schnack, Lectures in Magnetohydrodynamics, Springer, Berlin, 2009.
doi: 10.1007/978-3-642-00688-3. |
[52] |
R. Temam,
Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Archive Ration. Mech. Anal., 32 (1969), 135-153.
doi: 10.1007/BF00247678. |
[53] |
R. Temam, Navier-Stokes Equations – Theory and Numerical Analysis, North-Holland, Amsterdam, 1977. |
[54] |
G. Tomassetti, An interpretation of Temam's stabilization term in the quasi-incompressible Navier-Stokes system, 2019., Preprint, arXiv: 1909.11168. Google Scholar |
[55] |
P. Ván, M. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilib. Thermodyn., 42 (2017), 133-152. Google Scholar |
[56] |
W. Wagner and A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Reference Data, 31 (2002), 387–535. Google Scholar |


[1] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[2] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[3] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[4] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[5] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[6] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[7] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[8] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[9] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[10] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[11] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[12] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[13] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[14] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[15] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[16] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[17] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[18] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[19] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[20] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]