• Previous Article
    An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law
  • DCDS-S Home
  • This Issue
  • Next Article
    Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term
doi: 10.3934/dcdss.2020414

From quasi-incompressible to semi-compressible fluids

1. 

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

2. 

Institute of Thermomechanics, Czech Acad. Sci., Dolejškova 5, CZ-18200 Praha 8, Czech Republic

Received  December 2019 Revised  April 2020 Published  July 2020

Fund Project: This research has been partially supported from the grants 19-04956S of Czech Science Foundation, and the FWF/CSF project I 4052 N32 with BMBWF through the OeAD-WTZ project CZ04/2019, and also from the institutional support RVO: 61388998 (ČR)

A new concept of semi-compressible fluids is introduced for slightly compressible visco-elastic fluids (typically rather liquids than gasses) where mass density variations are negligible in some sense, while being directly controlled by pressure which is very small in comparison with the elastic bulk modulus. The physically consistent fully Eulerian models with specific dispersion of pressure-wave speed are devised. This contrasts to the so-called quasi-incompressible fluids which are described not physically consistently and, in fact, only approximate ideally incompressible ones in the limit. After surveying and modifying models for the quasi-incompressible fluids, we eventually devise some fully convective models complying with energy conservation and capturing phenomena as pressure-wave propagation with wave-length (and possibly also pressure) dependent velocity.

Citation: Tomáš Roubíček. From quasi-incompressible to semi-compressible fluids. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020414
References:
[1]

E. C. Aifantis, On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30 (1992), 1279-1299.  doi: 10.1016/0020-7225(92)90141-3.  Google Scholar

[2]

H. Askes and E. C. Aifantis, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Phys. Rev. B, 80 (2009), 195412. doi: 10.1103/PhysRevB.80.195412.  Google Scholar

[3]

H. Askes and E. C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Intl. J. Solids Structures, 48 (2011), 1962-1990.  doi: 10.1016/j.ijsolstr.2011.03.006.  Google Scholar

[4]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations, J. Stat. Phys., 63 (1991), 323-344.   Google Scholar

[5]

A. Bardow and H. C. Öttinger, Consequences of the Brenner modification to the Navier-Stokes equations for dynamic light scattering, Physica A, 373 (2007), 88-96.  doi: 10.1016/j.physa.2006.05.047.  Google Scholar

[6]

H. BelloutF. Bloom and J. Nečas, Phenomenological behavior of multipolar viscous fluids, Qarterly Appl. Math., 50 (1992), 559-583.  doi: 10.1090/qam/1178435.  Google Scholar

[7]

A. Berezovski and P. Ván, Internal Variables in Thermoelasticity, Springer, Switzerland, 2017.  Google Scholar

[8]

D. Bernoulli, Hydrodynamica, Sive De Viribus Et Motibus Fluidorum Cb ommentarii, 1738. Google Scholar

[9]

L. Berselli, Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations, Math. Meth. Appl. Sci., 22 (1999), 1079-1085.  doi: 10.1002/(SICI)1099-1476(19990910)22:13<1079::AID-MMA71>3.0.CO; 2-4.  Google Scholar

[10]

L. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585-3595.  doi: 10.1090/S0002-9939-02-06697-2.  Google Scholar

[11]

L. C. Berselli and S. Spirito, On the construction of suitable weak solutions to the 3D Navier-Stokes equations in a bounded domain by an artificial compressibility method, Comm. Contemporary Math., 20 (2018), 1650064. doi: 10.1142/S0219199716500644.  Google Scholar

[12] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge Univ. Press, 1993.  doi: 10.1017/CBO9780511599965.  Google Scholar
[13]

D. V. Boger, A highly elastic constant-viscosity fluid, J. Non-Newtonian Fluid Mechanics, 3 (1977), 87-91.  doi: 10.1016/0377-0257(77)80014-1.  Google Scholar

[14]

H. Brenner, Kinematics of volume transport, Physica A, 349 (2005), 11-59.  doi: 10.1016/j.physa.2004.10.033.  Google Scholar

[15]

H. Brenner, Fluid mechanics revisited, Physica A, 370 (2006), 190-224.  doi: 10.1016/j.physa.2006.03.066.  Google Scholar

[16]

M. BulíčekE. Feireisl and J. Málek, On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665-4681.  doi: 10.1088/1361-6544/ab3614.  Google Scholar

[17]

M. Bulíček, J. Málek, V. Průša and E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Mathematical Analysis in Fluid Mechanics–selected Recent Results, 25–51, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018. doi: 10.1090/conm/710/14362.  Google Scholar

[18]

M. BulíčekJ. Málek and K. Rajagopal, Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.  doi: 10.1512/iumj.2007.56.2997.  Google Scholar

[19]

J. BurczakJ. Málek and P. Minakowski, Stress-diffusive regularization of non-dissipative rate-type materials, Disc. Cont. Dynam. Systems - S, 10 (2017), 1233-1256.  doi: 10.3934/dcdss.2017067.  Google Scholar

[20]

C.-T. A. Chen and F. J. Millero, Speed of sound in seawater at high pressures, J. Acoustical Soc. Amer., 62 (1977), 1129-1135.  doi: 10.1121/1.381646.  Google Scholar

[21]

R. M. Chen, W. Layton and M. McLaughlin, Analysis of variable-step/non-autonomous artificial compression methods, J. Math. Fluid Mech., 21 (2019), Paper No. 30, 20 pp. doi: 10.1007/s00021-019-0429-2.  Google Scholar

[22]

A. Chorin, A numerical method for solving incompressible viscous flow problems, J. Computational Physics, 2 (1967), 12-26.  doi: 10.1016/0021-9991(67)90037-X.  Google Scholar

[23]

A. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[24]

M. E. Denson Jr, Longitudinal waves through the Earth's core, Bull. Seismological Soc. Amer., 42 (1952), 119-134.   Google Scholar

[25]

D. Donatelli and P. Marcati, A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3D, J. Hyperbolic Diff. Eqns., 3 (2006), 575-588.  doi: 10.1142/S0219891606000914.  Google Scholar

[26]

D. Donatelli and S. Spirito, Weak solutions of Navier-Stokes equations constructed by artificial compressibility method are suitable, J. Hyperbolic Diff. Eqns., 8 (2011), 101-113.  doi: 10.1142/S0219891611002330.  Google Scholar

[27]

J. EngelbrechtA. BerezovskiF. Pastrone and M. Braun, Waves in microstructured materials and dispersion, Phil. Mag., 85 (2005), 4127-4141.  doi: 10.1080/14786430500362769.  Google Scholar

[28]

A. Eringen, On differential equations of nonlinear elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710.   Google Scholar

[29]

E. FeireislY. Lu and J. Málek, On PDE analysis of flows of quasi-incompressible fluids, Zeit. angew. Math. Mech., 96 (2016), 491-508.  doi: 10.1002/zamm.201400229.  Google Scholar

[30]

E. Feireisl and A. Novotnỳ, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[31]

E. Feireisl and A. Vasseur, New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner, New Directions in Mathematical Fluid Mechanics, 153–179, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010.  Google Scholar

[32]

R. Fine and F. Millero, Compressibility of water as a function of temperature and pressure, J. Chem. Phys., 59 (1973), 5529-5536.  doi: 10.1063/1.1679903.  Google Scholar

[33]

E. Fried and M. Gurtin, Second-gradient Fluids: A Theory for Incompressible Flows at Small Length Scales, Technical Report TAM Reports 1064, Dept. Theoretical & Appl. Mech., 2005. Google Scholar

[34]

E. Fried and M. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Archive Ration. Mech. Anal., 182 (2006), 513-554.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[35]

B. Gutenberg, Wave velocities in the Earth's core, Bull. Seismological Soc. of America, 48 (1958), 301-314.   Google Scholar

[36]

D. James, Boger fluids, Annu. Rev. Fluid Mech., 41 (2009), 129-142.  doi: 10.1146/annurev.fluid.010908.165125.  Google Scholar

[37]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Sringer, Switzerland, 2019. Google Scholar

[38]

M. LazarG. A. Maugin and E. C. Aifantis, On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, Intl. J. Solids Structures, 43 (2006), 1404-1421.  doi: 10.1016/j.ijsolstr.2005.04.027.  Google Scholar

[39]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[40]

A. Madeo, P. Neff, E. C. Aifantis, G. Barbagallo and M. V. d'Agostino, On the role of micro-inertia in enriched continuum mechanics, Proc. R. Soc. A, 473 (2017), 17 pp. doi: 10.1098/rspa.2016.0722.  Google Scholar

[41]

Y. Marcus, Internal pressure of liquids and solutions, Chem. Rev., 113 (2013), 6536–6551. Google Scholar

[42]

F. J. MilleroC.-T. ChenA. Bradshaw and K. Schleicher, A new high pressure equation of state for seawater, Deep-Sea Research, 27 (1980), 255-264.   Google Scholar

[43]

K. G. NayarM. H. SharqawyL. D. Banchik and J. H. Lienhard V, Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination, 390 (2016), 1-24.  doi: 10.1016/j.desal.2016.02.024.  Google Scholar

[44]

J. NečasA. Novotnỳ and M. Šilhavỳ, Global solution to the ideal compressible heat conductive multipolar fluid, Comment. Math. Univ. Carolinae, 30 (1989), 551-564.   Google Scholar

[45]

J. Nečas and M. Růžička, Global solution to the incompressible viscous-multipolar material problem, J. Elasticity, 29 (1992), 175-202.  doi: 10.1007/BF00044516.  Google Scholar

[46]

A. P. Oskolkov, A small-parameter quasi-linear parabolic system approximating the Navier-Stokes system, J. Math. Sci., 1 (1973), 452-470.  doi: 10.1007/BF01084587.  Google Scholar

[47]

H. C. Öttinger, H. Struchtrup and M. Liu, Inconsistency of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E, 80 (2009), 056303. Google Scholar

[48]

P. Podio-Guidugli, Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997), 103-124.  doi: 10.1007/BF01782609.  Google Scholar

[49]

A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations, Springer, Wiesbaden, 1997. doi: 10.1007/978-3-663-11171-9.  Google Scholar

[50]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. Google Scholar

[51]

D. Schnack, Lectures in Magnetohydrodynamics, Springer, Berlin, 2009. doi: 10.1007/978-3-642-00688-3.  Google Scholar

[52]

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Archive Ration. Mech. Anal., 32 (1969), 135-153.  doi: 10.1007/BF00247678.  Google Scholar

[53]

R. Temam, Navier-Stokes Equations – Theory and Numerical Analysis, North-Holland, Amsterdam, 1977.  Google Scholar

[54]

G. Tomassetti, An interpretation of Temam's stabilization term in the quasi-incompressible Navier-Stokes system, 2019., Preprint, arXiv: 1909.11168. Google Scholar

[55]

P. VánM. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilib. Thermodyn., 42 (2017), 133-152.   Google Scholar

[56]

W. Wagner and A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Reference Data, 31 (2002), 387–535. Google Scholar

show all references

References:
[1]

E. C. Aifantis, On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30 (1992), 1279-1299.  doi: 10.1016/0020-7225(92)90141-3.  Google Scholar

[2]

H. Askes and E. C. Aifantis, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Phys. Rev. B, 80 (2009), 195412. doi: 10.1103/PhysRevB.80.195412.  Google Scholar

[3]

H. Askes and E. C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Intl. J. Solids Structures, 48 (2011), 1962-1990.  doi: 10.1016/j.ijsolstr.2011.03.006.  Google Scholar

[4]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations, J. Stat. Phys., 63 (1991), 323-344.   Google Scholar

[5]

A. Bardow and H. C. Öttinger, Consequences of the Brenner modification to the Navier-Stokes equations for dynamic light scattering, Physica A, 373 (2007), 88-96.  doi: 10.1016/j.physa.2006.05.047.  Google Scholar

[6]

H. BelloutF. Bloom and J. Nečas, Phenomenological behavior of multipolar viscous fluids, Qarterly Appl. Math., 50 (1992), 559-583.  doi: 10.1090/qam/1178435.  Google Scholar

[7]

A. Berezovski and P. Ván, Internal Variables in Thermoelasticity, Springer, Switzerland, 2017.  Google Scholar

[8]

D. Bernoulli, Hydrodynamica, Sive De Viribus Et Motibus Fluidorum Cb ommentarii, 1738. Google Scholar

[9]

L. Berselli, Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations, Math. Meth. Appl. Sci., 22 (1999), 1079-1085.  doi: 10.1002/(SICI)1099-1476(19990910)22:13<1079::AID-MMA71>3.0.CO; 2-4.  Google Scholar

[10]

L. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585-3595.  doi: 10.1090/S0002-9939-02-06697-2.  Google Scholar

[11]

L. C. Berselli and S. Spirito, On the construction of suitable weak solutions to the 3D Navier-Stokes equations in a bounded domain by an artificial compressibility method, Comm. Contemporary Math., 20 (2018), 1650064. doi: 10.1142/S0219199716500644.  Google Scholar

[12] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge Univ. Press, 1993.  doi: 10.1017/CBO9780511599965.  Google Scholar
[13]

D. V. Boger, A highly elastic constant-viscosity fluid, J. Non-Newtonian Fluid Mechanics, 3 (1977), 87-91.  doi: 10.1016/0377-0257(77)80014-1.  Google Scholar

[14]

H. Brenner, Kinematics of volume transport, Physica A, 349 (2005), 11-59.  doi: 10.1016/j.physa.2004.10.033.  Google Scholar

[15]

H. Brenner, Fluid mechanics revisited, Physica A, 370 (2006), 190-224.  doi: 10.1016/j.physa.2006.03.066.  Google Scholar

[16]

M. BulíčekE. Feireisl and J. Málek, On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665-4681.  doi: 10.1088/1361-6544/ab3614.  Google Scholar

[17]

M. Bulíček, J. Málek, V. Průša and E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Mathematical Analysis in Fluid Mechanics–selected Recent Results, 25–51, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018. doi: 10.1090/conm/710/14362.  Google Scholar

[18]

M. BulíčekJ. Málek and K. Rajagopal, Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.  doi: 10.1512/iumj.2007.56.2997.  Google Scholar

[19]

J. BurczakJ. Málek and P. Minakowski, Stress-diffusive regularization of non-dissipative rate-type materials, Disc. Cont. Dynam. Systems - S, 10 (2017), 1233-1256.  doi: 10.3934/dcdss.2017067.  Google Scholar

[20]

C.-T. A. Chen and F. J. Millero, Speed of sound in seawater at high pressures, J. Acoustical Soc. Amer., 62 (1977), 1129-1135.  doi: 10.1121/1.381646.  Google Scholar

[21]

R. M. Chen, W. Layton and M. McLaughlin, Analysis of variable-step/non-autonomous artificial compression methods, J. Math. Fluid Mech., 21 (2019), Paper No. 30, 20 pp. doi: 10.1007/s00021-019-0429-2.  Google Scholar

[22]

A. Chorin, A numerical method for solving incompressible viscous flow problems, J. Computational Physics, 2 (1967), 12-26.  doi: 10.1016/0021-9991(67)90037-X.  Google Scholar

[23]

A. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[24]

M. E. Denson Jr, Longitudinal waves through the Earth's core, Bull. Seismological Soc. Amer., 42 (1952), 119-134.   Google Scholar

[25]

D. Donatelli and P. Marcati, A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3D, J. Hyperbolic Diff. Eqns., 3 (2006), 575-588.  doi: 10.1142/S0219891606000914.  Google Scholar

[26]

D. Donatelli and S. Spirito, Weak solutions of Navier-Stokes equations constructed by artificial compressibility method are suitable, J. Hyperbolic Diff. Eqns., 8 (2011), 101-113.  doi: 10.1142/S0219891611002330.  Google Scholar

[27]

J. EngelbrechtA. BerezovskiF. Pastrone and M. Braun, Waves in microstructured materials and dispersion, Phil. Mag., 85 (2005), 4127-4141.  doi: 10.1080/14786430500362769.  Google Scholar

[28]

A. Eringen, On differential equations of nonlinear elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710.   Google Scholar

[29]

E. FeireislY. Lu and J. Málek, On PDE analysis of flows of quasi-incompressible fluids, Zeit. angew. Math. Mech., 96 (2016), 491-508.  doi: 10.1002/zamm.201400229.  Google Scholar

[30]

E. Feireisl and A. Novotnỳ, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[31]

E. Feireisl and A. Vasseur, New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner, New Directions in Mathematical Fluid Mechanics, 153–179, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010.  Google Scholar

[32]

R. Fine and F. Millero, Compressibility of water as a function of temperature and pressure, J. Chem. Phys., 59 (1973), 5529-5536.  doi: 10.1063/1.1679903.  Google Scholar

[33]

E. Fried and M. Gurtin, Second-gradient Fluids: A Theory for Incompressible Flows at Small Length Scales, Technical Report TAM Reports 1064, Dept. Theoretical & Appl. Mech., 2005. Google Scholar

[34]

E. Fried and M. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Archive Ration. Mech. Anal., 182 (2006), 513-554.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[35]

B. Gutenberg, Wave velocities in the Earth's core, Bull. Seismological Soc. of America, 48 (1958), 301-314.   Google Scholar

[36]

D. James, Boger fluids, Annu. Rev. Fluid Mech., 41 (2009), 129-142.  doi: 10.1146/annurev.fluid.010908.165125.  Google Scholar

[37]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Sringer, Switzerland, 2019. Google Scholar

[38]

M. LazarG. A. Maugin and E. C. Aifantis, On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, Intl. J. Solids Structures, 43 (2006), 1404-1421.  doi: 10.1016/j.ijsolstr.2005.04.027.  Google Scholar

[39]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[40]

A. Madeo, P. Neff, E. C. Aifantis, G. Barbagallo and M. V. d'Agostino, On the role of micro-inertia in enriched continuum mechanics, Proc. R. Soc. A, 473 (2017), 17 pp. doi: 10.1098/rspa.2016.0722.  Google Scholar

[41]

Y. Marcus, Internal pressure of liquids and solutions, Chem. Rev., 113 (2013), 6536–6551. Google Scholar

[42]

F. J. MilleroC.-T. ChenA. Bradshaw and K. Schleicher, A new high pressure equation of state for seawater, Deep-Sea Research, 27 (1980), 255-264.   Google Scholar

[43]

K. G. NayarM. H. SharqawyL. D. Banchik and J. H. Lienhard V, Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination, 390 (2016), 1-24.  doi: 10.1016/j.desal.2016.02.024.  Google Scholar

[44]

J. NečasA. Novotnỳ and M. Šilhavỳ, Global solution to the ideal compressible heat conductive multipolar fluid, Comment. Math. Univ. Carolinae, 30 (1989), 551-564.   Google Scholar

[45]

J. Nečas and M. Růžička, Global solution to the incompressible viscous-multipolar material problem, J. Elasticity, 29 (1992), 175-202.  doi: 10.1007/BF00044516.  Google Scholar

[46]

A. P. Oskolkov, A small-parameter quasi-linear parabolic system approximating the Navier-Stokes system, J. Math. Sci., 1 (1973), 452-470.  doi: 10.1007/BF01084587.  Google Scholar

[47]

H. C. Öttinger, H. Struchtrup and M. Liu, Inconsistency of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E, 80 (2009), 056303. Google Scholar

[48]

P. Podio-Guidugli, Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997), 103-124.  doi: 10.1007/BF01782609.  Google Scholar

[49]

A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations, Springer, Wiesbaden, 1997. doi: 10.1007/978-3-663-11171-9.  Google Scholar

[50]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. Google Scholar

[51]

D. Schnack, Lectures in Magnetohydrodynamics, Springer, Berlin, 2009. doi: 10.1007/978-3-642-00688-3.  Google Scholar

[52]

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I), Archive Ration. Mech. Anal., 32 (1969), 135-153.  doi: 10.1007/BF00247678.  Google Scholar

[53]

R. Temam, Navier-Stokes Equations – Theory and Numerical Analysis, North-Holland, Amsterdam, 1977.  Google Scholar

[54]

G. Tomassetti, An interpretation of Temam's stabilization term in the quasi-incompressible Navier-Stokes system, 2019., Preprint, arXiv: 1909.11168. Google Scholar

[55]

P. VánM. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilib. Thermodyn., 42 (2017), 133-152.   Google Scholar

[56]

W. Wagner and A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Reference Data, 31 (2002), 387–535. Google Scholar

Figure 1.  Dependence of the velocity of sinusoidal waves on the angular wavenumber k (left) and on the wave length λ = 2π/k (right); an illustration of the normal dispersion due to (30) and (28) for K=9 and ϱ = 1, and D = 3. Waves with ultra short lengths (or with ultra high wave numbers) have zero velocity, i.e. cannot propagate
Figure 2.  Dependence of the velocity of sinusoidal waves on the angular wavenumber k (left) and on the wave length λ = 2π/k (right); an illustration of the anormalous dispersion due to (38) and (37) for K=1, ϱ = 1, and D > 0 very small
[1]

Colette Guillopé, Abdelilah Hakim, Raafat Talhouk. Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle. Communications on Pure & Applied Analysis, 2005, 4 (1) : 23-43. doi: 10.3934/cpaa.2005.4.23

[2]

Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173

[3]

Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113

[4]

Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852

[5]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[6]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[7]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[8]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[9]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic & Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[10]

Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020345

[12]

Zaynab Salloum. Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 625-642. doi: 10.3934/cpaa.2010.9.625

[13]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[14]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[15]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[16]

Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181

[17]

Paola Trebeschi. On the slightly compressible MHD system in the half-plane. Communications on Pure & Applied Analysis, 2004, 3 (1) : 97-113. doi: 10.3934/cpaa.2004.3.97

[18]

Marcelo M. Disconzi. On the existence of solutions and causality for relativistic viscous conformal fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1567-1599. doi: 10.3934/cpaa.2019075

[19]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[20]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (34)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]