November  2021, 14(11): 4093-4140. doi: 10.3934/dcdss.2020419

Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions

1. 

Bahnhofstr. 39, 71364 Winnenden, Germany

2. 

Mathematisches Institut, Ernst-Zermelo-Str. 1, 79104 Freiburg, Germany

* Corresponding author: Michael Růžička

Received  January 2020 Revised  June 2020 Published  November 2021 Early access  August 2020

We consider a viscous, incompressible Newtonian fluid flowing through a thin elastic (non-cylindrical) structure. The motion of the structure is described by the equations of a linearised Koiter shell, whose motion is restricted to transverse displacements. The fluid and the structure are coupled by the continuity of velocities and an equilibrium of surface forces on the interface between fluid and structure. On a fixed in- and outflow region we prescribe natural boundary conditions. We show that weak solutions exist as long as the shell does not self-intersect.

Citation: Hannes Eberlein, Michael Růžička. Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4093-4140. doi: 10.3934/dcdss.2020419
References:
[1]

G. AcostaR. G. Durán and F. López García, Korn inequality and divergence operator: counterexamples and optimality of weighted estimates, Proc. Amer. Math. Soc., 141 (2013), 217-232.  doi: 10.1090/S0002-9939-2012-11408-X.

[2]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd edition, Springer, Berlin, 2006, A hitchhiker's guide.

[3]

H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.

[4]

J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B, 32 (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.

[5]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, vol. 5 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1973.

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.

[8]

A. ChambolleB. DesjardinsM. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.  doi: 10.1007/s00021-004-0121-y.

[9]

P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ, vol. 29 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 2000

[10]

P. G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity, With a foreword by Roger Fosdick. J. Elasticity 78/79 no. 1-3 (2005). doi: 10.1007/s10659-005-4738-8.

[11]

G. Cokelet, The rheology and tube flow of blood, in Handbook of bioengineering (eds. R. Skalak and S. Chien), McGraw-Hill, New York, 1987.

[12]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.

[13]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.

[14]

M. Dobrowolski, Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen, Springer-Lehrbuch Masterclass, Springer-Verlag, Berlin, 2006.

[15]

J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles., 2001, URL https://hal.archives-ouvertes.fr/hal-01382368.

[16]

H. Eberlein, Globale Existenz Schwacher Lösungen für die Interaktion Eines Newtonschen Fluides mit Einer linearen, Transversalen Koiter-Schale unter Natürlichen Randbedingungen, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2017.

[17]

E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.

[18]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.

[19]

E.-i. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.  doi: 10.2748/tmj/1178229399.

[20]

T. KatoM. MitreaG. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett., 7 (2000), 643-650.  doi: 10.4310/MRL.2000.v7.n5.a10.

[21]

V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Differential Equations, vol. 1 of Stability and Control: Theory, Methods and Applications, Gordon and Breach Science Publishers, Lausanne, 1995.

[22]

D. Lengeler, Globale Existenz für Die Interaktion Eines Navier-Stokes-Fluids Mit Einer Linear Elastischen Schale, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2011, Urn: nbn: de: bsz: 25-opus-84219.

[23]

D. Lengeler, Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell, SIAM J. Math. Anal., 46 (2014), 2614-2649.  doi: 10.1137/130911299.

[24]

D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255.  doi: 10.1007/s00205-013-0686-9.

[25]

J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271.  doi: 10.1007/s00021-012-0107-0.

[26]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[27]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.

[28]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1983 original.

[29]

N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417, URL https://doi.org/10.1007/s00205-016-1036-5. doi: 10.1007/s00205-016-1036-5.

[30]

B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.

[31]

B. Muha and S. Čanić, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst., 13 (2013), 357-397.  doi: 10.4310/CIS.2013.v13.n3.a4.

[32]

B. Muha and S. Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound., 17 (2015), 465-495.  doi: 10.4171/IFB/350.

[33]

B. Muha and S. Čanić, Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations, 260 (2016), 8550-8589.  doi: 10.1016/j.jde.2016.02.029.

[34]

A. QuarteroniM. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, 2 (2000), 163-197.  doi: 10.1007/s007910050039.

[35]

R. Russo, On Stokes' problem, in Advances in Mathematical Fluid Mechanics, Springer, Berlin, 2010,473–511. doi: 10.1007/978-3-642-04068-9_28.

[36]

Z. W. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.

[37]

H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.

[38]

M. E. Taylor, Partial Differential Equations I. Basic theory, vol. 115 of Applied Mathematical Sciences, Second edition edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.

[39]

R. Temam, Navier-Stokes Equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York, 1979, Studies in Mathematics and its Applications, Vol. 2.

show all references

References:
[1]

G. AcostaR. G. Durán and F. López García, Korn inequality and divergence operator: counterexamples and optimality of weighted estimates, Proc. Amer. Math. Soc., 141 (2013), 217-232.  doi: 10.1090/S0002-9939-2012-11408-X.

[2]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd edition, Springer, Berlin, 2006, A hitchhiker's guide.

[3]

H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.

[4]

J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B, 32 (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.

[5]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, vol. 5 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1973.

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.

[8]

A. ChambolleB. DesjardinsM. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.  doi: 10.1007/s00021-004-0121-y.

[9]

P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ, vol. 29 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 2000

[10]

P. G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity, With a foreword by Roger Fosdick. J. Elasticity 78/79 no. 1-3 (2005). doi: 10.1007/s10659-005-4738-8.

[11]

G. Cokelet, The rheology and tube flow of blood, in Handbook of bioengineering (eds. R. Skalak and S. Chien), McGraw-Hill, New York, 1987.

[12]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.

[13]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.

[14]

M. Dobrowolski, Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen, Springer-Lehrbuch Masterclass, Springer-Verlag, Berlin, 2006.

[15]

J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles., 2001, URL https://hal.archives-ouvertes.fr/hal-01382368.

[16]

H. Eberlein, Globale Existenz Schwacher Lösungen für die Interaktion Eines Newtonschen Fluides mit Einer linearen, Transversalen Koiter-Schale unter Natürlichen Randbedingungen, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2017.

[17]

E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.

[18]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.

[19]

E.-i. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.  doi: 10.2748/tmj/1178229399.

[20]

T. KatoM. MitreaG. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett., 7 (2000), 643-650.  doi: 10.4310/MRL.2000.v7.n5.a10.

[21]

V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Differential Equations, vol. 1 of Stability and Control: Theory, Methods and Applications, Gordon and Breach Science Publishers, Lausanne, 1995.

[22]

D. Lengeler, Globale Existenz für Die Interaktion Eines Navier-Stokes-Fluids Mit Einer Linear Elastischen Schale, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2011, Urn: nbn: de: bsz: 25-opus-84219.

[23]

D. Lengeler, Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell, SIAM J. Math. Anal., 46 (2014), 2614-2649.  doi: 10.1137/130911299.

[24]

D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255.  doi: 10.1007/s00205-013-0686-9.

[25]

J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271.  doi: 10.1007/s00021-012-0107-0.

[26]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[27]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.

[28]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1983 original.

[29]

N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417, URL https://doi.org/10.1007/s00205-016-1036-5. doi: 10.1007/s00205-016-1036-5.

[30]

B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.

[31]

B. Muha and S. Čanić, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst., 13 (2013), 357-397.  doi: 10.4310/CIS.2013.v13.n3.a4.

[32]

B. Muha and S. Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound., 17 (2015), 465-495.  doi: 10.4171/IFB/350.

[33]

B. Muha and S. Čanić, Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations, 260 (2016), 8550-8589.  doi: 10.1016/j.jde.2016.02.029.

[34]

A. QuarteroniM. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, 2 (2000), 163-197.  doi: 10.1007/s007910050039.

[35]

R. Russo, On Stokes' problem, in Advances in Mathematical Fluid Mechanics, Springer, Berlin, 2010,473–511. doi: 10.1007/978-3-642-04068-9_28.

[36]

Z. W. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.

[37]

H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.

[38]

M. E. Taylor, Partial Differential Equations I. Basic theory, vol. 115 of Applied Mathematical Sciences, Second edition edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.

[39]

R. Temam, Navier-Stokes Equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York, 1979, Studies in Mathematics and its Applications, Vol. 2.

Figure 1.  Reference domain $ \Omega $ with in- and outflow region $ \Gamma $ and moving boundary $ M $
Figure 2.  Notations for admissible in- and outflow domains and moving domains
Figure 3.  Extension of the fluid domain
[1]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[2]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[3]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[4]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[5]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[6]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[7]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[8]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[9]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[10]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[11]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[12]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[13]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[14]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[15]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[16]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations and Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[17]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[18]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[19]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[20]

Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (336)
  • HTML views (567)
  • Cited by (0)

Other articles
by authors

[Back to Top]