• Previous Article
    Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel
  • DCDS-S Home
  • This Issue
  • Next Article
    Solving a class of biological HIV infection model of latently infected cells using heuristic approach
doi: 10.3934/dcdss.2020419

Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions

1. 

Bahnhofstr. 39, 71364 Winnenden, Germany

2. 

Mathematisches Institut, Ernst-Zermelo-Str. 1, 79104 Freiburg, Germany

* Corresponding author: Michael Růžička

Received  January 2020 Revised  June 2020 Published  August 2020

We consider a viscous, incompressible Newtonian fluid flowing through a thin elastic (non-cylindrical) structure. The motion of the structure is described by the equations of a linearised Koiter shell, whose motion is restricted to transverse displacements. The fluid and the structure are coupled by the continuity of velocities and an equilibrium of surface forces on the interface between fluid and structure. On a fixed in- and outflow region we prescribe natural boundary conditions. We show that weak solutions exist as long as the shell does not self-intersect.

Citation: Hannes Eberlein, Michael Růžička. Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020419
References:
[1]

G. AcostaR. G. Durán and F. López García, Korn inequality and divergence operator: counterexamples and optimality of weighted estimates, Proc. Amer. Math. Soc., 141 (2013), 217-232.  doi: 10.1090/S0002-9939-2012-11408-X.  Google Scholar

[2]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd edition, Springer, Berlin, 2006, A hitchhiker's guide.  Google Scholar

[3]

H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.  Google Scholar

[4]

J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B, 32 (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.  Google Scholar

[5]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, vol. 5 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1973. Google Scholar

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.  Google Scholar

[8]

A. ChambolleB. DesjardinsM. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[9]

P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ, vol. 29 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 2000  Google Scholar

[10]

P. G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity, With a foreword by Roger Fosdick. J. Elasticity 78/79 no. 1-3 (2005). doi: 10.1007/s10659-005-4738-8.  Google Scholar

[11]

G. Cokelet, The rheology and tube flow of blood, in Handbook of bioengineering (eds. R. Skalak and S. Chien), McGraw-Hill, New York, 1987. Google Scholar

[12]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[13]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[14]

M. Dobrowolski, Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen, Springer-Lehrbuch Masterclass, Springer-Verlag, Berlin, 2006. Google Scholar

[15]

J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles., 2001, URL https://hal.archives-ouvertes.fr/hal-01382368. Google Scholar

[16]

H. Eberlein, Globale Existenz Schwacher Lösungen für die Interaktion Eines Newtonschen Fluides mit Einer linearen, Transversalen Koiter-Schale unter Natürlichen Randbedingungen, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2017. Google Scholar

[17]

E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.  Google Scholar

[18]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.  Google Scholar

[19]

E.-i. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.  doi: 10.2748/tmj/1178229399.  Google Scholar

[20]

T. KatoM. MitreaG. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett., 7 (2000), 643-650.  doi: 10.4310/MRL.2000.v7.n5.a10.  Google Scholar

[21]

V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Differential Equations, vol. 1 of Stability and Control: Theory, Methods and Applications, Gordon and Breach Science Publishers, Lausanne, 1995.  Google Scholar

[22]

D. Lengeler, Globale Existenz für Die Interaktion Eines Navier-Stokes-Fluids Mit Einer Linear Elastischen Schale, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2011, Urn: nbn: de: bsz: 25-opus-84219. Google Scholar

[23]

D. Lengeler, Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell, SIAM J. Math. Anal., 46 (2014), 2614-2649.  doi: 10.1137/130911299.  Google Scholar

[24]

D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255.  doi: 10.1007/s00205-013-0686-9.  Google Scholar

[25]

J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271.  doi: 10.1007/s00021-012-0107-0.  Google Scholar

[26]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[27]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.  Google Scholar

[28]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1983 original.  Google Scholar

[29]

N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417, URL https://doi.org/10.1007/s00205-016-1036-5. doi: 10.1007/s00205-016-1036-5.  Google Scholar

[30]

B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.  Google Scholar

[31]

B. Muha and S. Čanić, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst., 13 (2013), 357-397.  doi: 10.4310/CIS.2013.v13.n3.a4.  Google Scholar

[32]

B. Muha and S. Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound., 17 (2015), 465-495.  doi: 10.4171/IFB/350.  Google Scholar

[33]

B. Muha and S. Čanić, Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations, 260 (2016), 8550-8589.  doi: 10.1016/j.jde.2016.02.029.  Google Scholar

[34]

A. QuarteroniM. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, 2 (2000), 163-197.  doi: 10.1007/s007910050039.  Google Scholar

[35]

R. Russo, On Stokes' problem, in Advances in Mathematical Fluid Mechanics, Springer, Berlin, 2010,473–511. doi: 10.1007/978-3-642-04068-9_28.  Google Scholar

[36]

Z. W. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.  Google Scholar

[37]

H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[38]

M. E. Taylor, Partial Differential Equations I. Basic theory, vol. 115 of Applied Mathematical Sciences, Second edition edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.  Google Scholar

[39]

R. Temam, Navier-Stokes Equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York, 1979, Studies in Mathematics and its Applications, Vol. 2.  Google Scholar

show all references

References:
[1]

G. AcostaR. G. Durán and F. López García, Korn inequality and divergence operator: counterexamples and optimality of weighted estimates, Proc. Amer. Math. Soc., 141 (2013), 217-232.  doi: 10.1090/S0002-9939-2012-11408-X.  Google Scholar

[2]

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd edition, Springer, Berlin, 2006, A hitchhiker's guide.  Google Scholar

[3]

H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.  Google Scholar

[4]

J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B, 32 (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.  Google Scholar

[5]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, vol. 5 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1973. Google Scholar

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.  Google Scholar

[8]

A. ChambolleB. DesjardinsM. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[9]

P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ, vol. 29 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 2000  Google Scholar

[10]

P. G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity, With a foreword by Roger Fosdick. J. Elasticity 78/79 no. 1-3 (2005). doi: 10.1007/s10659-005-4738-8.  Google Scholar

[11]

G. Cokelet, The rheology and tube flow of blood, in Handbook of bioengineering (eds. R. Skalak and S. Chien), McGraw-Hill, New York, 1987. Google Scholar

[12]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[13]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[14]

M. Dobrowolski, Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen, Springer-Lehrbuch Masterclass, Springer-Verlag, Berlin, 2006. Google Scholar

[15]

J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles., 2001, URL https://hal.archives-ouvertes.fr/hal-01382368. Google Scholar

[16]

H. Eberlein, Globale Existenz Schwacher Lösungen für die Interaktion Eines Newtonschen Fluides mit Einer linearen, Transversalen Koiter-Schale unter Natürlichen Randbedingungen, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2017. Google Scholar

[17]

E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.  Google Scholar

[18]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.  Google Scholar

[19]

E.-i. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.  doi: 10.2748/tmj/1178229399.  Google Scholar

[20]

T. KatoM. MitreaG. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett., 7 (2000), 643-650.  doi: 10.4310/MRL.2000.v7.n5.a10.  Google Scholar

[21]

V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Differential Equations, vol. 1 of Stability and Control: Theory, Methods and Applications, Gordon and Breach Science Publishers, Lausanne, 1995.  Google Scholar

[22]

D. Lengeler, Globale Existenz für Die Interaktion Eines Navier-Stokes-Fluids Mit Einer Linear Elastischen Schale, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2011, Urn: nbn: de: bsz: 25-opus-84219. Google Scholar

[23]

D. Lengeler, Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell, SIAM J. Math. Anal., 46 (2014), 2614-2649.  doi: 10.1137/130911299.  Google Scholar

[24]

D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255.  doi: 10.1007/s00205-013-0686-9.  Google Scholar

[25]

J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271.  doi: 10.1007/s00021-012-0107-0.  Google Scholar

[26]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[27]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.  Google Scholar

[28]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1983 original.  Google Scholar

[29]

N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417, URL https://doi.org/10.1007/s00205-016-1036-5. doi: 10.1007/s00205-016-1036-5.  Google Scholar

[30]

B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.  Google Scholar

[31]

B. Muha and S. Čanić, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst., 13 (2013), 357-397.  doi: 10.4310/CIS.2013.v13.n3.a4.  Google Scholar

[32]

B. Muha and S. Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound., 17 (2015), 465-495.  doi: 10.4171/IFB/350.  Google Scholar

[33]

B. Muha and S. Čanić, Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations, 260 (2016), 8550-8589.  doi: 10.1016/j.jde.2016.02.029.  Google Scholar

[34]

A. QuarteroniM. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, 2 (2000), 163-197.  doi: 10.1007/s007910050039.  Google Scholar

[35]

R. Russo, On Stokes' problem, in Advances in Mathematical Fluid Mechanics, Springer, Berlin, 2010,473–511. doi: 10.1007/978-3-642-04068-9_28.  Google Scholar

[36]

Z. W. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.  Google Scholar

[37]

H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[38]

M. E. Taylor, Partial Differential Equations I. Basic theory, vol. 115 of Applied Mathematical Sciences, Second edition edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.  Google Scholar

[39]

R. Temam, Navier-Stokes Equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York, 1979, Studies in Mathematics and its Applications, Vol. 2.  Google Scholar

Figure 1.  Reference domain $ \Omega $ with in- and outflow region $ \Gamma $ and moving boundary $ M $
Figure 2.  Notations for admissible in- and outflow domains and moving domains
Figure 3.  Extension of the fluid domain
[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[5]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[6]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[8]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[9]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[10]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[11]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[14]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[15]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[16]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[17]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[18]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[19]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[20]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]