-
Previous Article
Feedback stabilization of bilinear coupled hyperbolic systems
- DCDS-S Home
- This Issue
-
Next Article
Solving a class of biological HIV infection model of latently infected cells using heuristic approach
Pata type contractions involving rational expressions with an application to integral equations
1. | ETSI Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam, Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey, Department of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan |
2. | University of the Free State, Bloemfontein, South Africa, Department of Mathematics and Computer Sciences, Transilvania University of Brasov, Romania |
In this paper, we introduce the notion of rational Pata type contraction in the complete metric space. After discussing the existence and uniqueness of a fixed point for such contraction, we consider a solution for integral equations.
References:
[1] |
T. Abdeljawad, R. P. Agarwal, E. Karapinar and P. Sumati Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), Article Number 686.
doi: 10.3390/sym11050686. |
[2] |
A. Ali, K. Shah, F. Jarad, V. Gupta and T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Difference Equ., (2019), Article Number 101, 21 pp.
doi: 10.1186/s13662-019-2047-y. |
[3] |
A. Atangana,
Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A, 505 (2018), 688-706.
doi: 10.1016/j.physa.2018.03.056. |
[4] |
A. Atangana and T. Mekkaoui,
Trinition the complex number with two imaginary parts: Fractal, chaos and fractional calculus, Chaos Solitons Fractals, 128 (2019), 366-381.
doi: 10.1016/j.chaos.2019.08.018. |
[5] |
S. Banach,
Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181.
doi: 10.4064/fm-3-1-133-181. |
[6] |
R. I. Batt, T. Abdeljawad, M. A.Alqudah and Mujeeb ur Rehman, Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach, J. Inequal. Appl., 2019 (2019), 305.
doi: 10.1186/s13660-019-2257-6. |
[7] |
F. Jarad, T. Abdeljawad and Z. Hammouch,
On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16-20.
doi: 10.1016/j.chaos.2018.10.006. |
[8] |
Z. Kadelburg and S. Radenović,
Fixed point theorems under Pata-type conditions in metric spaces, J. Egyptian Math. Soc., 24 (2016), 77-82.
doi: 10.1016/j.joems.2014.09.001. |
[9] |
Z. Kadelburg and S. Radenović,
A note on Pata-type cyclic contractions, Sarajevo J. Math., 11 (2015), 235-245.
|
[10] |
Z. Kadelburg and S. Radenović,
Pata-type common fixed point results in b-metric and $b$-rectangular metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 944-954.
doi: 10.22436/jnsa.008.06.05. |
[11] |
Z. Kadelburg and S. Radenovic, Fixed point and tripled fixed point theprems under Pata-type conditions in ordered metric spaces, International Journal of Analysis and Applications, 6, (2014), 113–122. |
[12] |
E. Karapinar, T. Abdeljawad and F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Difference Equ., 2019 (2019), Paper No. 421, 25 pp.
doi: 10.1186/s13662-019-2354-3. |
[13] |
E. Karapinar, I. M. Erhan and Ü. Aksoy, Weak $\psi$-contractions on partially ordered metric spaces and applications to boundary value problems, Bound. Value Probl., 2014 (2014), 149, 15 pp.
doi: 10.1186/s13661-014-0149-8. |
[14] |
J. Liouville,
Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont divers termes sont assujettis á satisfaire a une m eme équation différentielle du second ordre contenant un paramétre variable, J. Math. Pure et Appi., 2 (1837), 16-35.
|
[15] |
S. K. Panda, T. Abdeljawad and C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and -Fredholm integral equations, ![]() ![]() |
[16] |
S. K. Panda, T. Abdeljawad and K. K. Swamy, New numerical scheme for solving integral equations via fixed point method using distinct $\omega-F$-contractions, ![]() ![]() |
[17] |
V. Pata,
A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), 299-305.
doi: 10.1007/s11784-011-0060-1. |
[18] |
O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 12 pp.
doi: 10.1186/1687-1812-2014-190. |
[19] |
T. Suzuki,
A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317.
doi: 10.1016/j.na.2009.04.017. |
[20] |
T. Suzuki,
A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
doi: 10.1090/S0002-9939-07-09055-7. |
show all references
References:
[1] |
T. Abdeljawad, R. P. Agarwal, E. Karapinar and P. Sumati Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), Article Number 686.
doi: 10.3390/sym11050686. |
[2] |
A. Ali, K. Shah, F. Jarad, V. Gupta and T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Difference Equ., (2019), Article Number 101, 21 pp.
doi: 10.1186/s13662-019-2047-y. |
[3] |
A. Atangana,
Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A, 505 (2018), 688-706.
doi: 10.1016/j.physa.2018.03.056. |
[4] |
A. Atangana and T. Mekkaoui,
Trinition the complex number with two imaginary parts: Fractal, chaos and fractional calculus, Chaos Solitons Fractals, 128 (2019), 366-381.
doi: 10.1016/j.chaos.2019.08.018. |
[5] |
S. Banach,
Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181.
doi: 10.4064/fm-3-1-133-181. |
[6] |
R. I. Batt, T. Abdeljawad, M. A.Alqudah and Mujeeb ur Rehman, Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach, J. Inequal. Appl., 2019 (2019), 305.
doi: 10.1186/s13660-019-2257-6. |
[7] |
F. Jarad, T. Abdeljawad and Z. Hammouch,
On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16-20.
doi: 10.1016/j.chaos.2018.10.006. |
[8] |
Z. Kadelburg and S. Radenović,
Fixed point theorems under Pata-type conditions in metric spaces, J. Egyptian Math. Soc., 24 (2016), 77-82.
doi: 10.1016/j.joems.2014.09.001. |
[9] |
Z. Kadelburg and S. Radenović,
A note on Pata-type cyclic contractions, Sarajevo J. Math., 11 (2015), 235-245.
|
[10] |
Z. Kadelburg and S. Radenović,
Pata-type common fixed point results in b-metric and $b$-rectangular metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 944-954.
doi: 10.22436/jnsa.008.06.05. |
[11] |
Z. Kadelburg and S. Radenovic, Fixed point and tripled fixed point theprems under Pata-type conditions in ordered metric spaces, International Journal of Analysis and Applications, 6, (2014), 113–122. |
[12] |
E. Karapinar, T. Abdeljawad and F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Difference Equ., 2019 (2019), Paper No. 421, 25 pp.
doi: 10.1186/s13662-019-2354-3. |
[13] |
E. Karapinar, I. M. Erhan and Ü. Aksoy, Weak $\psi$-contractions on partially ordered metric spaces and applications to boundary value problems, Bound. Value Probl., 2014 (2014), 149, 15 pp.
doi: 10.1186/s13661-014-0149-8. |
[14] |
J. Liouville,
Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont divers termes sont assujettis á satisfaire a une m eme équation différentielle du second ordre contenant un paramétre variable, J. Math. Pure et Appi., 2 (1837), 16-35.
|
[15] |
S. K. Panda, T. Abdeljawad and C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and -Fredholm integral equations, ![]() ![]() |
[16] |
S. K. Panda, T. Abdeljawad and K. K. Swamy, New numerical scheme for solving integral equations via fixed point method using distinct $\omega-F$-contractions, ![]() ![]() |
[17] |
V. Pata,
A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), 299-305.
doi: 10.1007/s11784-011-0060-1. |
[18] |
O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 12 pp.
doi: 10.1186/1687-1812-2014-190. |
[19] |
T. Suzuki,
A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317.
doi: 10.1016/j.na.2009.04.017. |
[20] |
T. Suzuki,
A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
doi: 10.1090/S0002-9939-07-09055-7. |
[1] |
Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253 |
[2] |
Bassam Fayad, Maria Saprykina. Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 597-604. doi: 10.3934/dcds.2021129 |
[3] |
Najeeb Abdulaleem. Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022004 |
[4] |
Qianying Xiao, Zuohuan Zheng. $C^1$ weak Palis conjecture for nonsingular flows. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074 |
[5] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081 |
[6] |
Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2221-2252. doi: 10.3934/dcdss.2019143 |
[7] |
Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 |
[8] |
Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002 |
[9] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[10] |
Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, 2021, 29 (4) : 2645-2656. doi: 10.3934/era.2021006 |
[11] |
Yi Peng, Jinbiao Wu. On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3373-3391. doi: 10.3934/jimo.2020124 |
[12] |
Fan Wu, Linlin Fu, Jiahao Xu. On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2525-2540. doi: 10.3934/dcds.2021201 |
[13] |
Paola F. Antonietti, Simone Scacchi, Giuseppe Vacca, Marco Verani. $ C^1 $-VEM for some variants of the Cahn-Hilliard equation: A numerical exploration. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1919-1939. doi: 10.3934/dcdss.2022038 |
[14] |
Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134 |
[15] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[16] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
[17] |
VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 |
[18] |
Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154 |
[19] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
[20] |
Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]