• Previous Article
    Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
  • DCDS-S Home
  • This Issue
  • Next Article
    Signed-distance function based non-rigid registration of image series with varying image intensity
doi: 10.3934/dcdss.2020421

On solutions of fractal fractional differential equations

1. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Science, University of Free State, 9300, Bloemfontein, South Africa, Department of Medical Research, China, Medical University Hospital, China, Medical University, Taichung, Taiwan

2. 

Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  October 2019 Revised  December 2019 Published  August 2020

New class of differential and integral operators with fractional order and fractal dimension have been introduced very recently and gave birth to new class of differential and integral equations. In this paper, we derive exact solution of some important ordinary differential equations where the differential operators are the fractal-fractional. We presented a new numerical scheme to obtain solution in the nonlinear case. We presented the numerical simulation for different values of fractional orders and fractal dimension.

Citation: Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020421
References:
[1]

A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 114 (2018), 478-482.  doi: 10.1016/j.chaos.2018.07.032.  Google Scholar

[2]

E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108, 6 pp. doi: 10.1063/1.5084035.  Google Scholar

[3]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[4]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Themal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[5]

A. Atangana and M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Solitons Fractals, 126 (2019), 50-59.  doi: 10.1016/j.chaos.2019.06.002.  Google Scholar

[6]

D. Baleanu and T. Avkar, Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, IL Nuovo Cimento B, 119 (2004), 73-79.   Google Scholar

[7]

D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.  Google Scholar

[8]

D. Baleanu, H. K. Jassim and M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract, 3 (2019), 43. doi: 10.3390/fractalfract3030043.  Google Scholar

[9]

A. Bashir, A. Ahmed, S. Sara and K. Sotiris, Ntouyas fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Fractal Fract, 3 (2019), 34. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-15.   Google Scholar

[11]

W. ChenH. SunX. Zhang and D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758.  doi: 10.1016/j.camwa.2009.08.020.  Google Scholar

[12]

A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386-401.  doi: 10.1016/j.amc.2019.01.025.  Google Scholar

[13]

J.-H. He, Fractal calculus and its geometrical explanation, Results in Physics, 10 (2018), 272-276.  doi: 10.1016/j.rinp.2018.06.011.  Google Scholar

[14]

F. K. Jafari, M. S. Asgari and A. Pishkoo, The fractal calculus for fractal materials, Fractal Fract, 3 (2019), 8. doi: 10.3390/fractalfract3010008.  Google Scholar

[15]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524, 14 pp. doi: 10.1016/j.physa.2019.122524.  Google Scholar

[16]

A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111, 15 pp. doi: 10.1063/1.5112177.  Google Scholar

[17]

R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165-175.  doi: 10.1016/S0378-4371(97)00422-6.  Google Scholar

[18]

A. Khalili Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract, 3 (2019), 41. doi: 10.3390/fractalfract3030041.  Google Scholar

[19]

F. MohammadiL. MoradiD. Baleanu and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to non-analytic dynamical systems, J. Vib. Control, 24 (2018), 5030-5043.  doi: 10.1177/1077546317741769.  Google Scholar

[20]

R. T. Sibatov and H. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder, Fractal Fract, 3 (2019), 47. doi: 10.3390/fractalfract3040047.  Google Scholar

[21]

X.-J. YangM. Abdel-Aty and C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Thermal Science, 23 (2019), 1677-1681.  doi: 10.2298/TSCI180320239Y.  Google Scholar

[22]

H. Yue and H. J. Huan, On fractal space-time and fractional calculus, Thermal Science, 20 (2016), 773-777.   Google Scholar

show all references

References:
[1]

A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 114 (2018), 478-482.  doi: 10.1016/j.chaos.2018.07.032.  Google Scholar

[2]

E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108, 6 pp. doi: 10.1063/1.5084035.  Google Scholar

[3]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[4]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Themal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[5]

A. Atangana and M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Solitons Fractals, 126 (2019), 50-59.  doi: 10.1016/j.chaos.2019.06.002.  Google Scholar

[6]

D. Baleanu and T. Avkar, Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, IL Nuovo Cimento B, 119 (2004), 73-79.   Google Scholar

[7]

D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.  Google Scholar

[8]

D. Baleanu, H. K. Jassim and M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract, 3 (2019), 43. doi: 10.3390/fractalfract3030043.  Google Scholar

[9]

A. Bashir, A. Ahmed, S. Sara and K. Sotiris, Ntouyas fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Fractal Fract, 3 (2019), 34. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-15.   Google Scholar

[11]

W. ChenH. SunX. Zhang and D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758.  doi: 10.1016/j.camwa.2009.08.020.  Google Scholar

[12]

A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386-401.  doi: 10.1016/j.amc.2019.01.025.  Google Scholar

[13]

J.-H. He, Fractal calculus and its geometrical explanation, Results in Physics, 10 (2018), 272-276.  doi: 10.1016/j.rinp.2018.06.011.  Google Scholar

[14]

F. K. Jafari, M. S. Asgari and A. Pishkoo, The fractal calculus for fractal materials, Fractal Fract, 3 (2019), 8. doi: 10.3390/fractalfract3010008.  Google Scholar

[15]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524, 14 pp. doi: 10.1016/j.physa.2019.122524.  Google Scholar

[16]

A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111, 15 pp. doi: 10.1063/1.5112177.  Google Scholar

[17]

R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165-175.  doi: 10.1016/S0378-4371(97)00422-6.  Google Scholar

[18]

A. Khalili Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract, 3 (2019), 41. doi: 10.3390/fractalfract3030041.  Google Scholar

[19]

F. MohammadiL. MoradiD. Baleanu and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to non-analytic dynamical systems, J. Vib. Control, 24 (2018), 5030-5043.  doi: 10.1177/1077546317741769.  Google Scholar

[20]

R. T. Sibatov and H. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder, Fractal Fract, 3 (2019), 47. doi: 10.3390/fractalfract3040047.  Google Scholar

[21]

X.-J. YangM. Abdel-Aty and C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Thermal Science, 23 (2019), 1677-1681.  doi: 10.2298/TSCI180320239Y.  Google Scholar

[22]

H. Yue and H. J. Huan, On fractal space-time and fractional calculus, Thermal Science, 20 (2016), 773-777.   Google Scholar

Figure 1.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=0.1=\beta. $
Figure 2.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=0.5=\beta. $
Figure 3.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=1.0=\beta. $
Figure 4.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=0.1=\beta. $
Figure 5.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=0.5=\beta. $
Figure 6.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=1.0=\beta. $
Figure 7.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=0.1=\beta. $
Figure 8.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=0.5=\beta. $
Figure 9.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=1.0=\beta. $
[1]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058

[2]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033

[3]

Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020171

[4]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[5]

Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020423

[6]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050

[7]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[8]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[9]

Semyon Yakubovich. The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform. Communications on Pure & Applied Analysis, 2011, 10 (2) : 745-760. doi: 10.3934/cpaa.2011.10.745

[10]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[11]

Ali Akgül. A new application of the reproducing kernel method. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020261

[12]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029

[13]

Frédéric Robert. On the influence of the kernel of the bi-harmonic operator on fourth order equations with exponential growth. Conference Publications, 2007, 2007 (Special) : 875-882. doi: 10.3934/proc.2007.2007.875

[14]

Tuğba Akman Yıldız, Amin Jajarmi, Burak Yıldız, Dumitru Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 407-428. doi: 10.3934/dcdss.2020023

[15]

Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020172

[16]

Xiao-Qiang Zhao, Shengfan Zhou. Kernel sections for processes and nonautonomous lattice systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 763-785. doi: 10.3934/dcdsb.2008.9.763

[17]

Alfredo Lorenzi, Eugenio Sinestrari. Identifying a BV-kernel in a hyperbolic integrodifferential equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1199-1219. doi: 10.3934/dcds.2008.21.1199

[18]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2020010

[19]

François Bolley, Arnaud Guillin, Xinyu Wang. Non ultracontractive heat kernel bounds by Lyapunov conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 857-870. doi: 10.3934/dcds.2015.35.857

[20]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (52)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]