• Previous Article
    Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator
doi: 10.3934/dcdss.2020421

On solutions of fractal fractional differential equations

1. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Science, University of Free State, 9300, Bloemfontein, South Africa, Department of Medical Research, China, Medical University Hospital, China, Medical University, Taichung, Taiwan

2. 

Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  October 2019 Revised  December 2019 Published  August 2020

New class of differential and integral operators with fractional order and fractal dimension have been introduced very recently and gave birth to new class of differential and integral equations. In this paper, we derive exact solution of some important ordinary differential equations where the differential operators are the fractal-fractional. We presented a new numerical scheme to obtain solution in the nonlinear case. We presented the numerical simulation for different values of fractional orders and fractal dimension.

Citation: Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020421
References:
[1]

A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 114 (2018), 478-482.  doi: 10.1016/j.chaos.2018.07.032.  Google Scholar

[2]

E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108, 6 pp. doi: 10.1063/1.5084035.  Google Scholar

[3]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[4]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Themal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[5]

A. Atangana and M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Solitons Fractals, 126 (2019), 50-59.  doi: 10.1016/j.chaos.2019.06.002.  Google Scholar

[6]

D. Baleanu and T. Avkar, Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, IL Nuovo Cimento B, 119 (2004), 73-79.   Google Scholar

[7]

D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.  Google Scholar

[8]

D. Baleanu, H. K. Jassim and M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract, 3 (2019), 43. doi: 10.3390/fractalfract3030043.  Google Scholar

[9]

A. Bashir, A. Ahmed, S. Sara and K. Sotiris, Ntouyas fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Fractal Fract, 3 (2019), 34. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-15.   Google Scholar

[11]

W. ChenH. SunX. Zhang and D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758.  doi: 10.1016/j.camwa.2009.08.020.  Google Scholar

[12]

A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386-401.  doi: 10.1016/j.amc.2019.01.025.  Google Scholar

[13]

J.-H. He, Fractal calculus and its geometrical explanation, Results in Physics, 10 (2018), 272-276.  doi: 10.1016/j.rinp.2018.06.011.  Google Scholar

[14]

F. K. Jafari, M. S. Asgari and A. Pishkoo, The fractal calculus for fractal materials, Fractal Fract, 3 (2019), 8. doi: 10.3390/fractalfract3010008.  Google Scholar

[15]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524, 14 pp. doi: 10.1016/j.physa.2019.122524.  Google Scholar

[16]

A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111, 15 pp. doi: 10.1063/1.5112177.  Google Scholar

[17]

R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165-175.  doi: 10.1016/S0378-4371(97)00422-6.  Google Scholar

[18]

A. Khalili Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract, 3 (2019), 41. doi: 10.3390/fractalfract3030041.  Google Scholar

[19]

F. MohammadiL. MoradiD. Baleanu and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to non-analytic dynamical systems, J. Vib. Control, 24 (2018), 5030-5043.  doi: 10.1177/1077546317741769.  Google Scholar

[20]

R. T. Sibatov and H. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder, Fractal Fract, 3 (2019), 47. doi: 10.3390/fractalfract3040047.  Google Scholar

[21]

X.-J. YangM. Abdel-Aty and C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Thermal Science, 23 (2019), 1677-1681.  doi: 10.2298/TSCI180320239Y.  Google Scholar

[22]

H. Yue and H. J. Huan, On fractal space-time and fractional calculus, Thermal Science, 20 (2016), 773-777.   Google Scholar

show all references

References:
[1]

A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 114 (2018), 478-482.  doi: 10.1016/j.chaos.2018.07.032.  Google Scholar

[2]

E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108, 6 pp. doi: 10.1063/1.5084035.  Google Scholar

[3]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[4]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Themal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[5]

A. Atangana and M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Solitons Fractals, 126 (2019), 50-59.  doi: 10.1016/j.chaos.2019.06.002.  Google Scholar

[6]

D. Baleanu and T. Avkar, Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, IL Nuovo Cimento B, 119 (2004), 73-79.   Google Scholar

[7]

D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.  Google Scholar

[8]

D. Baleanu, H. K. Jassim and M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract, 3 (2019), 43. doi: 10.3390/fractalfract3030043.  Google Scholar

[9]

A. Bashir, A. Ahmed, S. Sara and K. Sotiris, Ntouyas fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Fractal Fract, 3 (2019), 34. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-15.   Google Scholar

[11]

W. ChenH. SunX. Zhang and D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758.  doi: 10.1016/j.camwa.2009.08.020.  Google Scholar

[12]

A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386-401.  doi: 10.1016/j.amc.2019.01.025.  Google Scholar

[13]

J.-H. He, Fractal calculus and its geometrical explanation, Results in Physics, 10 (2018), 272-276.  doi: 10.1016/j.rinp.2018.06.011.  Google Scholar

[14]

F. K. Jafari, M. S. Asgari and A. Pishkoo, The fractal calculus for fractal materials, Fractal Fract, 3 (2019), 8. doi: 10.3390/fractalfract3010008.  Google Scholar

[15]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524, 14 pp. doi: 10.1016/j.physa.2019.122524.  Google Scholar

[16]

A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111, 15 pp. doi: 10.1063/1.5112177.  Google Scholar

[17]

R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165-175.  doi: 10.1016/S0378-4371(97)00422-6.  Google Scholar

[18]

A. Khalili Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract, 3 (2019), 41. doi: 10.3390/fractalfract3030041.  Google Scholar

[19]

F. MohammadiL. MoradiD. Baleanu and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to non-analytic dynamical systems, J. Vib. Control, 24 (2018), 5030-5043.  doi: 10.1177/1077546317741769.  Google Scholar

[20]

R. T. Sibatov and H. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder, Fractal Fract, 3 (2019), 47. doi: 10.3390/fractalfract3040047.  Google Scholar

[21]

X.-J. YangM. Abdel-Aty and C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Thermal Science, 23 (2019), 1677-1681.  doi: 10.2298/TSCI180320239Y.  Google Scholar

[22]

H. Yue and H. J. Huan, On fractal space-time and fractional calculus, Thermal Science, 20 (2016), 773-777.   Google Scholar

Figure 1.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=0.1=\beta. $
Figure 2.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=0.5=\beta. $
Figure 3.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=1.0=\beta. $
Figure 4.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=0.1=\beta. $
Figure 5.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=0.5=\beta. $
Figure 6.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=1.0=\beta. $
Figure 7.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=0.1=\beta. $
Figure 8.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=0.5=\beta. $
Figure 9.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=1.0=\beta. $
[1]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[2]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[3]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[4]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[5]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[6]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[7]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[8]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[9]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[10]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[11]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[12]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[13]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[14]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[15]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[16]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

[17]

Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021027

[18]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[19]

George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021004

[20]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (309)
  • HTML views (327)
  • Cited by (7)

Other articles
by authors

[Back to Top]