• Previous Article
    Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator
doi: 10.3934/dcdss.2020421

On solutions of fractal fractional differential equations

1. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Science, University of Free State, 9300, Bloemfontein, South Africa, Department of Medical Research, China, Medical University Hospital, China, Medical University, Taichung, Taiwan

2. 

Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  October 2019 Revised  December 2019 Published  August 2020

New class of differential and integral operators with fractional order and fractal dimension have been introduced very recently and gave birth to new class of differential and integral equations. In this paper, we derive exact solution of some important ordinary differential equations where the differential operators are the fractal-fractional. We presented a new numerical scheme to obtain solution in the nonlinear case. We presented the numerical simulation for different values of fractional orders and fractal dimension.

Citation: Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020421
References:
[1]

A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 114 (2018), 478-482.  doi: 10.1016/j.chaos.2018.07.032.  Google Scholar

[2]

E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108, 6 pp. doi: 10.1063/1.5084035.  Google Scholar

[3]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[4]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Themal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[5]

A. Atangana and M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Solitons Fractals, 126 (2019), 50-59.  doi: 10.1016/j.chaos.2019.06.002.  Google Scholar

[6]

D. Baleanu and T. Avkar, Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, IL Nuovo Cimento B, 119 (2004), 73-79.   Google Scholar

[7]

D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.  Google Scholar

[8]

D. Baleanu, H. K. Jassim and M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract, 3 (2019), 43. doi: 10.3390/fractalfract3030043.  Google Scholar

[9]

A. Bashir, A. Ahmed, S. Sara and K. Sotiris, Ntouyas fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Fractal Fract, 3 (2019), 34. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-15.   Google Scholar

[11]

W. ChenH. SunX. Zhang and D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758.  doi: 10.1016/j.camwa.2009.08.020.  Google Scholar

[12]

A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386-401.  doi: 10.1016/j.amc.2019.01.025.  Google Scholar

[13]

J.-H. He, Fractal calculus and its geometrical explanation, Results in Physics, 10 (2018), 272-276.  doi: 10.1016/j.rinp.2018.06.011.  Google Scholar

[14]

F. K. Jafari, M. S. Asgari and A. Pishkoo, The fractal calculus for fractal materials, Fractal Fract, 3 (2019), 8. doi: 10.3390/fractalfract3010008.  Google Scholar

[15]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524, 14 pp. doi: 10.1016/j.physa.2019.122524.  Google Scholar

[16]

A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111, 15 pp. doi: 10.1063/1.5112177.  Google Scholar

[17]

R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165-175.  doi: 10.1016/S0378-4371(97)00422-6.  Google Scholar

[18]

A. Khalili Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract, 3 (2019), 41. doi: 10.3390/fractalfract3030041.  Google Scholar

[19]

F. MohammadiL. MoradiD. Baleanu and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to non-analytic dynamical systems, J. Vib. Control, 24 (2018), 5030-5043.  doi: 10.1177/1077546317741769.  Google Scholar

[20]

R. T. Sibatov and H. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder, Fractal Fract, 3 (2019), 47. doi: 10.3390/fractalfract3040047.  Google Scholar

[21]

X.-J. YangM. Abdel-Aty and C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Thermal Science, 23 (2019), 1677-1681.  doi: 10.2298/TSCI180320239Y.  Google Scholar

[22]

H. Yue and H. J. Huan, On fractal space-time and fractional calculus, Thermal Science, 20 (2016), 773-777.   Google Scholar

show all references

References:
[1]

A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fractals, 114 (2018), 478-482.  doi: 10.1016/j.chaos.2018.07.032.  Google Scholar

[2]

E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108, 6 pp. doi: 10.1063/1.5084035.  Google Scholar

[3]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[4]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Themal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[5]

A. Atangana and M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Solitons Fractals, 126 (2019), 50-59.  doi: 10.1016/j.chaos.2019.06.002.  Google Scholar

[6]

D. Baleanu and T. Avkar, Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, IL Nuovo Cimento B, 119 (2004), 73-79.   Google Scholar

[7]

D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.  Google Scholar

[8]

D. Baleanu, H. K. Jassim and M. Al Qurashi, Solving Helmholtz equation with local fractional derivative operators, Fractal Fract, 3 (2019), 43. doi: 10.3390/fractalfract3030043.  Google Scholar

[9]

A. Bashir, A. Ahmed, S. Sara and K. Sotiris, Ntouyas fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Fractal Fract, 3 (2019), 34. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-15.   Google Scholar

[11]

W. ChenH. SunX. Zhang and D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758.  doi: 10.1016/j.camwa.2009.08.020.  Google Scholar

[12]

A. K. Golmankhaneh and C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386-401.  doi: 10.1016/j.amc.2019.01.025.  Google Scholar

[13]

J.-H. He, Fractal calculus and its geometrical explanation, Results in Physics, 10 (2018), 272-276.  doi: 10.1016/j.rinp.2018.06.011.  Google Scholar

[14]

F. K. Jafari, M. S. Asgari and A. Pishkoo, The fractal calculus for fractal materials, Fractal Fract, 3 (2019), 8. doi: 10.3390/fractalfract3010008.  Google Scholar

[15]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524, 14 pp. doi: 10.1016/j.physa.2019.122524.  Google Scholar

[16]

A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111, 15 pp. doi: 10.1063/1.5112177.  Google Scholar

[17]

R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165-175.  doi: 10.1016/S0378-4371(97)00422-6.  Google Scholar

[18]

A. Khalili Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract, 3 (2019), 41. doi: 10.3390/fractalfract3030041.  Google Scholar

[19]

F. MohammadiL. MoradiD. Baleanu and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to non-analytic dynamical systems, J. Vib. Control, 24 (2018), 5030-5043.  doi: 10.1177/1077546317741769.  Google Scholar

[20]

R. T. Sibatov and H. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder, Fractal Fract, 3 (2019), 47. doi: 10.3390/fractalfract3040047.  Google Scholar

[21]

X.-J. YangM. Abdel-Aty and C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Thermal Science, 23 (2019), 1677-1681.  doi: 10.2298/TSCI180320239Y.  Google Scholar

[22]

H. Yue and H. J. Huan, On fractal space-time and fractional calculus, Thermal Science, 20 (2016), 773-777.   Google Scholar

Figure 1.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=0.1=\beta. $
Figure 2.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=0.5=\beta. $
Figure 3.  Solutions of the first problem for Caputo, Caputo-Fabrizio and Atangana Baleanu derivatives for $ \alpha=1.0=\beta. $
Figure 4.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=0.1=\beta. $
Figure 5.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=0.5=\beta. $
Figure 6.  Solutions of the first problem for Caputo and Caputo-Fabrizio derivatives for $ \alpha=1.0=\beta. $
Figure 7.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=0.1=\beta. $
Figure 8.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=0.5=\beta. $
Figure 9.  Solutions of the first problem for Caputo-Fabrizio and Atangana-Baleanu derivatives for $ \alpha=1.0=\beta. $
[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]