October  2021, 14(10): 3401-3417. doi: 10.3934/dcdss.2020423

Analysis and new applications of fractal fractional differential equations with power law kernel

Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  October 2019 Revised  February 2020 Published  October 2021 Early access  September 2020

Fund Project: The first author is supported by 2020-SIUFEB-022

We obtain the solutions of fractal fractional differential equations with the power law kernel by reproducing kernel Hilbert space method in this paper. We also apply the Laplace transform to get the exact solutions of the problems. We compare the exact solutions with the approximate solutions. We demonstrate our results by some tables and figures. We prove the efficiency of the proposed technique for fractal fractional differential equations.

Citation: Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3401-3417. doi: 10.3934/dcdss.2020423
References:
[1]

A. Akgül and D. Grow, Existence of solutions to the telegraph equation in binary reproducing kernel Hilbert spaces, Differential Equations and Dynamical Systems, (2019). doi: 10.1007/s12591-019-00453-3.

[2]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discret. Contin. Dyn. Syst. Ser. S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.

[3]

N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.  doi: 10.2307/1990404.

[4]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons and Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.

[5]

A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Discret. Contin. Dyn. Syst. Ser. S. doi: 10.3934/dcdss.2020421.

[6]

P. Bouboulis and M. Mavroforakis, Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math., 235 (2011), 3425-3434.  doi: 10.1016/j.cam.2011.02.003.

[7]

V. F. M. Delgado, J. F. G. Aguilar, H. Y. Martínez, D. Baleanu, R. F. E. Jimenez and V. H. O. Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ., (2016), 164. doi: 10.1186/s13662-016-0891-6.

[8]

J. Fahd and T. A. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2 (2018), 88-98. 

[9]

J. Fan and J. He, Fractal derivative model for air permeability in hierarchic porous media, Abstract and Applied Analysis, (2012). doi: 10.1155/2012/354701.

[10]

H. K. Jassim, C. Ünlü, S. P. Moshokoa and C. M. Khalique, Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators, Math. Probl. Eng., (2015), 309870. doi: 10.1155/2015/309870.

[11]

J. Liouville, Mémoire sur quelques qustions de géomerie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions, J.d'École Polytechnique, 1 (1832), 1–69.

[12]

A. Talbot, The accurate numerical inversion of laplace transforms, IMA J. Appl. Math., 23 (1979), 97-120. 

[13]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444.

[14]

S. Xiang, Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind, Appl. Math. Comput., 232 (2014), 944-954.  doi: 10.1016/j.amc.2014.01.054.

[15]

L. M. Yan, Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations, Therm. Sci., 17 (2013), 1409-1414. 

[16]

X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science, New York, NY, USA, 2012.

show all references

References:
[1]

A. Akgül and D. Grow, Existence of solutions to the telegraph equation in binary reproducing kernel Hilbert spaces, Differential Equations and Dynamical Systems, (2019). doi: 10.1007/s12591-019-00453-3.

[2]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discret. Contin. Dyn. Syst. Ser. S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.

[3]

N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.  doi: 10.2307/1990404.

[4]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons and Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.

[5]

A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Discret. Contin. Dyn. Syst. Ser. S. doi: 10.3934/dcdss.2020421.

[6]

P. Bouboulis and M. Mavroforakis, Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math., 235 (2011), 3425-3434.  doi: 10.1016/j.cam.2011.02.003.

[7]

V. F. M. Delgado, J. F. G. Aguilar, H. Y. Martínez, D. Baleanu, R. F. E. Jimenez and V. H. O. Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ., (2016), 164. doi: 10.1186/s13662-016-0891-6.

[8]

J. Fahd and T. A. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2 (2018), 88-98. 

[9]

J. Fan and J. He, Fractal derivative model for air permeability in hierarchic porous media, Abstract and Applied Analysis, (2012). doi: 10.1155/2012/354701.

[10]

H. K. Jassim, C. Ünlü, S. P. Moshokoa and C. M. Khalique, Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators, Math. Probl. Eng., (2015), 309870. doi: 10.1155/2015/309870.

[11]

J. Liouville, Mémoire sur quelques qustions de géomerie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions, J.d'École Polytechnique, 1 (1832), 1–69.

[12]

A. Talbot, The accurate numerical inversion of laplace transforms, IMA J. Appl. Math., 23 (1979), 97-120. 

[13]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444.

[14]

S. Xiang, Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind, Appl. Math. Comput., 232 (2014), 944-954.  doi: 10.1016/j.amc.2014.01.054.

[15]

L. M. Yan, Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations, Therm. Sci., 17 (2013), 1409-1414. 

[16]

X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science, New York, NY, USA, 2012.

Figure 1.  Exact Solutions (ES) of the second problem for $ \alpha = \beta = 0.1 $ and $ \alpha = \beta = 0.9 $
Figure 2.  Exact Solutions (ES) of the second problem for $ \alpha=\beta=0.5 $ and $ \alpha=\beta=0.9 $
Figure 3.  Exact Solutions (ES) of the second problem for $ \alpha = \beta = 1.0 $ and $ \alpha = \beta = 0.9 $
Figure 4.  The dynamical behavior of the chaotic attractor for $ \alpha = 1 = \beta. $
Figure 5.  The dynamical behavior of the chaotic attractor for $ \alpha = 0.98 $ and $ \beta = 0.99 $
Figure 6.  The dynamical behavior of the chaotic attractor for $ \alpha = 0.1 $ and different values of $ \beta. $
Figure 7.  The dynamical behavior of the chaotic attractor for $ \beta = 1 $ and different values of $ \alpha. $
Table 1.  Approximate solutions of the first problem
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.5$ $\alpha=\beta=0.9$
0.1 0.03854888333 0.0307043774 0.0078792973
0.2 0.05333186893 0.0614101561 0.0259058607
0.3 0.06270054818 0.0921156879 0.0516560594
0.4 0.06958768905 0.1228211511 0.0837457401
0.5 0.07504844747 0.1535265840 0.1212235367
0.6 0.07958273648 0.1842320012 0.1633740132
0.7 0.08346678875 0.2149374096 0.2096297969
0.8 0.08686918110 0.2456428118 0.2595266634
0.9 0.08990026700 0.2763482087 0.3126792521
1.0 0.09263619896 0.3070536026 0.3687589104
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.5$ $\alpha=\beta=0.9$
0.1 0.03854888333 0.0307043774 0.0078792973
0.2 0.05333186893 0.0614101561 0.0259058607
0.3 0.06270054818 0.0921156879 0.0516560594
0.4 0.06958768905 0.1228211511 0.0837457401
0.5 0.07504844747 0.1535265840 0.1212235367
0.6 0.07958273648 0.1842320012 0.1633740132
0.7 0.08346678875 0.2149374096 0.2096297969
0.8 0.08686918110 0.2456428118 0.2595266634
0.9 0.08990026700 0.2763482087 0.3126792521
1.0 0.09263619896 0.3070536026 0.3687589104
Table 2.  Absolute Errors for the second problem
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.55$ $\alpha=\beta=0.95$
0.1 0.00000062152 0.00000676818 0.00000856466
0.2 0.00000032204 0.00000490756 0.00001243897
0.3 0.00000022407 0.00000407914 0.00002174689
0.4 0.00000017321 0.00000358476 0.00003698863
0.5 0.00000014600 0.00000324696 0.00005597480
0.6 0.00000012155 0.00000299770 0.00008452815
0.7 0.00000010765 0.00000282100 0.00009461450
0.8 0.00000009145 0.00000269290 0.00012236140
0.9 0.00000018475 0.00001399970 0.00021363610
1.0 0.00000018475 0.00001399970 0.00021363610
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.55$ $\alpha=\beta=0.95$
0.1 0.00000062152 0.00000676818 0.00000856466
0.2 0.00000032204 0.00000490756 0.00001243897
0.3 0.00000022407 0.00000407914 0.00002174689
0.4 0.00000017321 0.00000358476 0.00003698863
0.5 0.00000014600 0.00000324696 0.00005597480
0.6 0.00000012155 0.00000299770 0.00008452815
0.7 0.00000010765 0.00000282100 0.00009461450
0.8 0.00000009145 0.00000269290 0.00012236140
0.9 0.00000018475 0.00001399970 0.00021363610
1.0 0.00000018475 0.00001399970 0.00021363610
Table 3.  Relative Errors for the second problem
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$
0.1 0.0001037114955 0.00247111550600 0.019860952690
0.2 0.0000233907536 0.00041794915520 0.003864445499
0.3 0.0000100048043 0.00014826368870 0.002084659184
0.4 0.0000054760999 0.00007121228610 0.001539514613
0.5 0.0000035331934 0.00004037018634 0.001219745100
0.6 0.0000023623478 0.00002541507333 0.001085556125
0.7 0.0000017388686 0.00001730286530 0.000777074981
0.8 0.0000012705894 0.00001247820391 0.000682296305
0.9 0.0000009831650 0.00000965486512 0.000773284787
1.0 0.0000019451577 0.00004060126398 0.000623683400
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$
0.1 0.0001037114955 0.00247111550600 0.019860952690
0.2 0.0000233907536 0.00041794915520 0.003864445499
0.3 0.0000100048043 0.00014826368870 0.002084659184
0.4 0.0000054760999 0.00007121228610 0.001539514613
0.5 0.0000035331934 0.00004037018634 0.001219745100
0.6 0.0000023623478 0.00002541507333 0.001085556125
0.7 0.0000017388686 0.00001730286530 0.000777074981
0.8 0.0000012705894 0.00001247820391 0.000682296305
0.9 0.0000009831650 0.00000965486512 0.000773284787
1.0 0.0000019451577 0.00004060126398 0.000623683400
Table 4.  Approximate Solution (AS), Exact Solution (ES), Absolute Error (AE) and Relative Error (RE) for the second problem for $ \alpha = 0.5 $ and $ \beta = 1 $
$x$ $AS$ $ES$ $AE$
0.1 0.0019195134 0.00190306572 0.00001644769
0.2 0.0107895265 0.01076536543 0.00002416107
0.3 0.0296830910 0.02966585872 0.00001723228
0.4 0.0610499710 0.06089810315 0.00015186785
0.5 0.1065047070 0.10638460810 0.00012009890
0.6 0.1680971830 0.16781543890 0.00028174410
0.7 0.2469466021 0.24671689310 0.00022970900
0.8 0.3444606528 0.34449169370 0.00003104090
0.9 0.4653131081 0.46244497090 0.00339997550
1.0 0.6052021980 0.60180222250 0.00339997550
$x$ $AS$ $ES$ $AE$
0.1 0.0019195134 0.00190306572 0.00001644769
0.2 0.0107895265 0.01076536543 0.00002416107
0.3 0.0296830910 0.02966585872 0.00001723228
0.4 0.0610499710 0.06089810315 0.00015186785
0.5 0.1065047070 0.10638460810 0.00012009890
0.6 0.1680971830 0.16781543890 0.00028174410
0.7 0.2469466021 0.24671689310 0.00022970900
0.8 0.3444606528 0.34449169370 0.00003104090
0.9 0.4653131081 0.46244497090 0.00339997550
1.0 0.6052021980 0.60180222250 0.00339997550
Table 5.  Approximate Solution (AS) for the third problem for $ \alpha = \beta = 0.5 $
$x$ $AS$
0.1 0.00048062670
0.2 0.00395841402
0.3 0.01287525177
0.4 0.02728111814
0.5 0.04281856069
0.6 0.05461350578
0.7 0.05592662854
0.8 0.03911508097
0.9 -0.0027967424
1.0 -0.0752782621
$x$ $AS$
0.1 0.00048062670
0.2 0.00395841402
0.3 0.01287525177
0.4 0.02728111814
0.5 0.04281856069
0.6 0.05461350578
0.7 0.05592662854
0.8 0.03911508097
0.9 -0.0027967424
1.0 -0.0752782621
[1]

Ali Akgül. A new application of the reproducing kernel method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2041-2053. doi: 10.3934/dcdss.2020261

[2]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[3]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems and Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[4]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[5]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems and Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[6]

Marjan Uddin, Hazrat Ali. Space-time kernel based numerical method for generalized Black-Scholes equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2905-2915. doi: 10.3934/dcdss.2020221

[7]

Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3441-3457. doi: 10.3934/dcdss.2020421

[8]

Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053

[9]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[10]

Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[12]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[13]

Ichrak Bouacida, Mourad Kerboua, Sami Segni. Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022028

[14]

Ying Lin, Rongrong Lin, Qi Ye. Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm. Mathematical Foundations of Computing, 2020, 3 (3) : 205-218. doi: 10.3934/mfc.2020020

[15]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[16]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[17]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[18]

Steven G. Krantz and Marco M. Peloso. New results on the Bergman kernel of the worm domain in complex space. Electronic Research Announcements, 2007, 14: 35-41. doi: 10.3934/era.2007.14.35

[19]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial and Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[20]

Ting Hu. Kernel-based maximum correntropy criterion with gradient descent method. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4159-4177. doi: 10.3934/cpaa.2020186

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (404)
  • HTML views (451)
  • Cited by (1)

Other articles
by authors

[Back to Top]