• Previous Article
    A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators
  • DCDS-S Home
  • This Issue
  • Next Article
    Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays
doi: 10.3934/dcdss.2020423

Analysis and new applications of fractal fractional differential equations with power law kernel

Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  October 2019 Revised  February 2020 Published  September 2020

Fund Project: The first author is supported by 2020-SIUFEB-022

We obtain the solutions of fractal fractional differential equations with the power law kernel by reproducing kernel Hilbert space method in this paper. We also apply the Laplace transform to get the exact solutions of the problems. We compare the exact solutions with the approximate solutions. We demonstrate our results by some tables and figures. We prove the efficiency of the proposed technique for fractal fractional differential equations.

Citation: Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020423
References:
[1]

A. Akgül and D. Grow, Existence of solutions to the telegraph equation in binary reproducing kernel Hilbert spaces, Differential Equations and Dynamical Systems, (2019). doi: 10.1007/s12591-019-00453-3.  Google Scholar

[2]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discret. Contin. Dyn. Syst. Ser. S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.  Google Scholar

[3]

N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.  doi: 10.2307/1990404.  Google Scholar

[4]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons and Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[5]

A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Discret. Contin. Dyn. Syst. Ser. S. doi: 10.3934/dcdss.2020421.  Google Scholar

[6]

P. Bouboulis and M. Mavroforakis, Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math., 235 (2011), 3425-3434.  doi: 10.1016/j.cam.2011.02.003.  Google Scholar

[7]

V. F. M. Delgado, J. F. G. Aguilar, H. Y. Martínez, D. Baleanu, R. F. E. Jimenez and V. H. O. Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ., (2016), 164. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[8]

J. Fahd and T. A. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2 (2018), 88-98.   Google Scholar

[9]

J. Fan and J. He, Fractal derivative model for air permeability in hierarchic porous media, Abstract and Applied Analysis, (2012). doi: 10.1155/2012/354701.  Google Scholar

[10]

H. K. Jassim, C. Ünlü, S. P. Moshokoa and C. M. Khalique, Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators, Math. Probl. Eng., (2015), 309870. doi: 10.1155/2015/309870.  Google Scholar

[11]

J. Liouville, Mémoire sur quelques qustions de géomerie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions, J.d'École Polytechnique, 1 (1832), 1–69. Google Scholar

[12]

A. Talbot, The accurate numerical inversion of laplace transforms, IMA J. Appl. Math., 23 (1979), 97-120.   Google Scholar

[13]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. Google Scholar

[14]

S. Xiang, Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind, Appl. Math. Comput., 232 (2014), 944-954.  doi: 10.1016/j.amc.2014.01.054.  Google Scholar

[15]

L. M. Yan, Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations, Therm. Sci., 17 (2013), 1409-1414.   Google Scholar

[16]

X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science, New York, NY, USA, 2012. Google Scholar

show all references

References:
[1]

A. Akgül and D. Grow, Existence of solutions to the telegraph equation in binary reproducing kernel Hilbert spaces, Differential Equations and Dynamical Systems, (2019). doi: 10.1007/s12591-019-00453-3.  Google Scholar

[2]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discret. Contin. Dyn. Syst. Ser. S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.  Google Scholar

[3]

N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.  doi: 10.2307/1990404.  Google Scholar

[4]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons and Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[5]

A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Discret. Contin. Dyn. Syst. Ser. S. doi: 10.3934/dcdss.2020421.  Google Scholar

[6]

P. Bouboulis and M. Mavroforakis, Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math., 235 (2011), 3425-3434.  doi: 10.1016/j.cam.2011.02.003.  Google Scholar

[7]

V. F. M. Delgado, J. F. G. Aguilar, H. Y. Martínez, D. Baleanu, R. F. E. Jimenez and V. H. O. Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ., (2016), 164. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[8]

J. Fahd and T. A. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2 (2018), 88-98.   Google Scholar

[9]

J. Fan and J. He, Fractal derivative model for air permeability in hierarchic porous media, Abstract and Applied Analysis, (2012). doi: 10.1155/2012/354701.  Google Scholar

[10]

H. K. Jassim, C. Ünlü, S. P. Moshokoa and C. M. Khalique, Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators, Math. Probl. Eng., (2015), 309870. doi: 10.1155/2015/309870.  Google Scholar

[11]

J. Liouville, Mémoire sur quelques qustions de géomerie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions, J.d'École Polytechnique, 1 (1832), 1–69. Google Scholar

[12]

A. Talbot, The accurate numerical inversion of laplace transforms, IMA J. Appl. Math., 23 (1979), 97-120.   Google Scholar

[13]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. Google Scholar

[14]

S. Xiang, Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind, Appl. Math. Comput., 232 (2014), 944-954.  doi: 10.1016/j.amc.2014.01.054.  Google Scholar

[15]

L. M. Yan, Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations, Therm. Sci., 17 (2013), 1409-1414.   Google Scholar

[16]

X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science, New York, NY, USA, 2012. Google Scholar

Figure 1.  Exact Solutions (ES) of the second problem for $ \alpha = \beta = 0.1 $ and $ \alpha = \beta = 0.9 $
Figure 2.  Exact Solutions (ES) of the second problem for $ \alpha=\beta=0.5 $ and $ \alpha=\beta=0.9 $
Figure 3.  Exact Solutions (ES) of the second problem for $ \alpha = \beta = 1.0 $ and $ \alpha = \beta = 0.9 $
Figure 4.  The dynamical behavior of the chaotic attractor for $ \alpha = 1 = \beta. $
Figure 5.  The dynamical behavior of the chaotic attractor for $ \alpha = 0.98 $ and $ \beta = 0.99 $
Figure 6.  The dynamical behavior of the chaotic attractor for $ \alpha = 0.1 $ and different values of $ \beta. $
Figure 7.  The dynamical behavior of the chaotic attractor for $ \beta = 1 $ and different values of $ \alpha. $
Table 1.  Approximate solutions of the first problem
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.5$ $\alpha=\beta=0.9$
0.1 0.03854888333 0.0307043774 0.0078792973
0.2 0.05333186893 0.0614101561 0.0259058607
0.3 0.06270054818 0.0921156879 0.0516560594
0.4 0.06958768905 0.1228211511 0.0837457401
0.5 0.07504844747 0.1535265840 0.1212235367
0.6 0.07958273648 0.1842320012 0.1633740132
0.7 0.08346678875 0.2149374096 0.2096297969
0.8 0.08686918110 0.2456428118 0.2595266634
0.9 0.08990026700 0.2763482087 0.3126792521
1.0 0.09263619896 0.3070536026 0.3687589104
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.5$ $\alpha=\beta=0.9$
0.1 0.03854888333 0.0307043774 0.0078792973
0.2 0.05333186893 0.0614101561 0.0259058607
0.3 0.06270054818 0.0921156879 0.0516560594
0.4 0.06958768905 0.1228211511 0.0837457401
0.5 0.07504844747 0.1535265840 0.1212235367
0.6 0.07958273648 0.1842320012 0.1633740132
0.7 0.08346678875 0.2149374096 0.2096297969
0.8 0.08686918110 0.2456428118 0.2595266634
0.9 0.08990026700 0.2763482087 0.3126792521
1.0 0.09263619896 0.3070536026 0.3687589104
Table 2.  Absolute Errors for the second problem
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.55$ $\alpha=\beta=0.95$
0.1 0.00000062152 0.00000676818 0.00000856466
0.2 0.00000032204 0.00000490756 0.00001243897
0.3 0.00000022407 0.00000407914 0.00002174689
0.4 0.00000017321 0.00000358476 0.00003698863
0.5 0.00000014600 0.00000324696 0.00005597480
0.6 0.00000012155 0.00000299770 0.00008452815
0.7 0.00000010765 0.00000282100 0.00009461450
0.8 0.00000009145 0.00000269290 0.00012236140
0.9 0.00000018475 0.00001399970 0.00021363610
1.0 0.00000018475 0.00001399970 0.00021363610
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.55$ $\alpha=\beta=0.95$
0.1 0.00000062152 0.00000676818 0.00000856466
0.2 0.00000032204 0.00000490756 0.00001243897
0.3 0.00000022407 0.00000407914 0.00002174689
0.4 0.00000017321 0.00000358476 0.00003698863
0.5 0.00000014600 0.00000324696 0.00005597480
0.6 0.00000012155 0.00000299770 0.00008452815
0.7 0.00000010765 0.00000282100 0.00009461450
0.8 0.00000009145 0.00000269290 0.00012236140
0.9 0.00000018475 0.00001399970 0.00021363610
1.0 0.00000018475 0.00001399970 0.00021363610
Table 3.  Relative Errors for the second problem
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$
0.1 0.0001037114955 0.00247111550600 0.019860952690
0.2 0.0000233907536 0.00041794915520 0.003864445499
0.3 0.0000100048043 0.00014826368870 0.002084659184
0.4 0.0000054760999 0.00007121228610 0.001539514613
0.5 0.0000035331934 0.00004037018634 0.001219745100
0.6 0.0000023623478 0.00002541507333 0.001085556125
0.7 0.0000017388686 0.00001730286530 0.000777074981
0.8 0.0000012705894 0.00001247820391 0.000682296305
0.9 0.0000009831650 0.00000965486512 0.000773284787
1.0 0.0000019451577 0.00004060126398 0.000623683400
$x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$
0.1 0.0001037114955 0.00247111550600 0.019860952690
0.2 0.0000233907536 0.00041794915520 0.003864445499
0.3 0.0000100048043 0.00014826368870 0.002084659184
0.4 0.0000054760999 0.00007121228610 0.001539514613
0.5 0.0000035331934 0.00004037018634 0.001219745100
0.6 0.0000023623478 0.00002541507333 0.001085556125
0.7 0.0000017388686 0.00001730286530 0.000777074981
0.8 0.0000012705894 0.00001247820391 0.000682296305
0.9 0.0000009831650 0.00000965486512 0.000773284787
1.0 0.0000019451577 0.00004060126398 0.000623683400
Table 4.  Approximate Solution (AS), Exact Solution (ES), Absolute Error (AE) and Relative Error (RE) for the second problem for $ \alpha = 0.5 $ and $ \beta = 1 $
$x$ $AS$ $ES$ $AE$
0.1 0.0019195134 0.00190306572 0.00001644769
0.2 0.0107895265 0.01076536543 0.00002416107
0.3 0.0296830910 0.02966585872 0.00001723228
0.4 0.0610499710 0.06089810315 0.00015186785
0.5 0.1065047070 0.10638460810 0.00012009890
0.6 0.1680971830 0.16781543890 0.00028174410
0.7 0.2469466021 0.24671689310 0.00022970900
0.8 0.3444606528 0.34449169370 0.00003104090
0.9 0.4653131081 0.46244497090 0.00339997550
1.0 0.6052021980 0.60180222250 0.00339997550
$x$ $AS$ $ES$ $AE$
0.1 0.0019195134 0.00190306572 0.00001644769
0.2 0.0107895265 0.01076536543 0.00002416107
0.3 0.0296830910 0.02966585872 0.00001723228
0.4 0.0610499710 0.06089810315 0.00015186785
0.5 0.1065047070 0.10638460810 0.00012009890
0.6 0.1680971830 0.16781543890 0.00028174410
0.7 0.2469466021 0.24671689310 0.00022970900
0.8 0.3444606528 0.34449169370 0.00003104090
0.9 0.4653131081 0.46244497090 0.00339997550
1.0 0.6052021980 0.60180222250 0.00339997550
Table 5.  Approximate Solution (AS) for the third problem for $ \alpha = \beta = 0.5 $
$x$ $AS$
0.1 0.00048062670
0.2 0.00395841402
0.3 0.01287525177
0.4 0.02728111814
0.5 0.04281856069
0.6 0.05461350578
0.7 0.05592662854
0.8 0.03911508097
0.9 -0.0027967424
1.0 -0.0752782621
$x$ $AS$
0.1 0.00048062670
0.2 0.00395841402
0.3 0.01287525177
0.4 0.02728111814
0.5 0.04281856069
0.6 0.05461350578
0.7 0.05592662854
0.8 0.03911508097
0.9 -0.0027967424
1.0 -0.0752782621
[1]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[4]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[13]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[14]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[15]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[18]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[19]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]