# American Institute of Mathematical Sciences

• Previous Article
A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators
• DCDS-S Home
• This Issue
• Next Article
Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays

## Analysis and new applications of fractal fractional differential equations with power law kernel

 Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  October 2019 Revised  February 2020 Published  September 2020

Fund Project: The first author is supported by 2020-SIUFEB-022

We obtain the solutions of fractal fractional differential equations with the power law kernel by reproducing kernel Hilbert space method in this paper. We also apply the Laplace transform to get the exact solutions of the problems. We compare the exact solutions with the approximate solutions. We demonstrate our results by some tables and figures. We prove the efficiency of the proposed technique for fractal fractional differential equations.

Citation: Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020423
##### References:

show all references

##### References:
Exact Solutions (ES) of the second problem for $\alpha = \beta = 0.1$ and $\alpha = \beta = 0.9$
Exact Solutions (ES) of the second problem for $\alpha=\beta=0.5$ and $\alpha=\beta=0.9$
Exact Solutions (ES) of the second problem for $\alpha = \beta = 1.0$ and $\alpha = \beta = 0.9$
The dynamical behavior of the chaotic attractor for $\alpha = 1 = \beta.$
The dynamical behavior of the chaotic attractor for $\alpha = 0.98$ and $\beta = 0.99$
The dynamical behavior of the chaotic attractor for $\alpha = 0.1$ and different values of $\beta.$
The dynamical behavior of the chaotic attractor for $\beta = 1$ and different values of $\alpha.$
Approximate solutions of the first problem
 $x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.5$ $\alpha=\beta=0.9$ 0.1 0.03854888333 0.0307043774 0.0078792973 0.2 0.05333186893 0.0614101561 0.0259058607 0.3 0.06270054818 0.0921156879 0.0516560594 0.4 0.06958768905 0.1228211511 0.0837457401 0.5 0.07504844747 0.1535265840 0.1212235367 0.6 0.07958273648 0.1842320012 0.1633740132 0.7 0.08346678875 0.2149374096 0.2096297969 0.8 0.08686918110 0.2456428118 0.2595266634 0.9 0.08990026700 0.2763482087 0.3126792521 1.0 0.09263619896 0.3070536026 0.3687589104
 $x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.5$ $\alpha=\beta=0.9$ 0.1 0.03854888333 0.0307043774 0.0078792973 0.2 0.05333186893 0.0614101561 0.0259058607 0.3 0.06270054818 0.0921156879 0.0516560594 0.4 0.06958768905 0.1228211511 0.0837457401 0.5 0.07504844747 0.1535265840 0.1212235367 0.6 0.07958273648 0.1842320012 0.1633740132 0.7 0.08346678875 0.2149374096 0.2096297969 0.8 0.08686918110 0.2456428118 0.2595266634 0.9 0.08990026700 0.2763482087 0.3126792521 1.0 0.09263619896 0.3070536026 0.3687589104
Absolute Errors for the second problem
 $x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.55$ $\alpha=\beta=0.95$ 0.1 0.00000062152 0.00000676818 0.00000856466 0.2 0.00000032204 0.00000490756 0.00001243897 0.3 0.00000022407 0.00000407914 0.00002174689 0.4 0.00000017321 0.00000358476 0.00003698863 0.5 0.00000014600 0.00000324696 0.00005597480 0.6 0.00000012155 0.00000299770 0.00008452815 0.7 0.00000010765 0.00000282100 0.00009461450 0.8 0.00000009145 0.00000269290 0.00012236140 0.9 0.00000018475 0.00001399970 0.00021363610 1.0 0.00000018475 0.00001399970 0.00021363610
 $x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.55$ $\alpha=\beta=0.95$ 0.1 0.00000062152 0.00000676818 0.00000856466 0.2 0.00000032204 0.00000490756 0.00001243897 0.3 0.00000022407 0.00000407914 0.00002174689 0.4 0.00000017321 0.00000358476 0.00003698863 0.5 0.00000014600 0.00000324696 0.00005597480 0.6 0.00000012155 0.00000299770 0.00008452815 0.7 0.00000010765 0.00000282100 0.00009461450 0.8 0.00000009145 0.00000269290 0.00012236140 0.9 0.00000018475 0.00001399970 0.00021363610 1.0 0.00000018475 0.00001399970 0.00021363610
Relative Errors for the second problem
 $x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ 0.1 0.0001037114955 0.00247111550600 0.019860952690 0.2 0.0000233907536 0.00041794915520 0.003864445499 0.3 0.0000100048043 0.00014826368870 0.002084659184 0.4 0.0000054760999 0.00007121228610 0.001539514613 0.5 0.0000035331934 0.00004037018634 0.001219745100 0.6 0.0000023623478 0.00002541507333 0.001085556125 0.7 0.0000017388686 0.00001730286530 0.000777074981 0.8 0.0000012705894 0.00001247820391 0.000682296305 0.9 0.0000009831650 0.00000965486512 0.000773284787 1.0 0.0000019451577 0.00004060126398 0.000623683400
 $x$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ $\alpha=\beta=0.1$ 0.1 0.0001037114955 0.00247111550600 0.019860952690 0.2 0.0000233907536 0.00041794915520 0.003864445499 0.3 0.0000100048043 0.00014826368870 0.002084659184 0.4 0.0000054760999 0.00007121228610 0.001539514613 0.5 0.0000035331934 0.00004037018634 0.001219745100 0.6 0.0000023623478 0.00002541507333 0.001085556125 0.7 0.0000017388686 0.00001730286530 0.000777074981 0.8 0.0000012705894 0.00001247820391 0.000682296305 0.9 0.0000009831650 0.00000965486512 0.000773284787 1.0 0.0000019451577 0.00004060126398 0.000623683400
Approximate Solution (AS), Exact Solution (ES), Absolute Error (AE) and Relative Error (RE) for the second problem for $\alpha = 0.5$ and $\beta = 1$
 $x$ $AS$ $ES$ $AE$ 0.1 0.0019195134 0.00190306572 0.00001644769 0.2 0.0107895265 0.01076536543 0.00002416107 0.3 0.0296830910 0.02966585872 0.00001723228 0.4 0.0610499710 0.06089810315 0.00015186785 0.5 0.1065047070 0.10638460810 0.00012009890 0.6 0.1680971830 0.16781543890 0.00028174410 0.7 0.2469466021 0.24671689310 0.00022970900 0.8 0.3444606528 0.34449169370 0.00003104090 0.9 0.4653131081 0.46244497090 0.00339997550 1.0 0.6052021980 0.60180222250 0.00339997550
 $x$ $AS$ $ES$ $AE$ 0.1 0.0019195134 0.00190306572 0.00001644769 0.2 0.0107895265 0.01076536543 0.00002416107 0.3 0.0296830910 0.02966585872 0.00001723228 0.4 0.0610499710 0.06089810315 0.00015186785 0.5 0.1065047070 0.10638460810 0.00012009890 0.6 0.1680971830 0.16781543890 0.00028174410 0.7 0.2469466021 0.24671689310 0.00022970900 0.8 0.3444606528 0.34449169370 0.00003104090 0.9 0.4653131081 0.46244497090 0.00339997550 1.0 0.6052021980 0.60180222250 0.00339997550
Approximate Solution (AS) for the third problem for $\alpha = \beta = 0.5$
 $x$ $AS$ 0.1 0.00048062670 0.2 0.00395841402 0.3 0.01287525177 0.4 0.02728111814 0.5 0.04281856069 0.6 0.05461350578 0.7 0.05592662854 0.8 0.03911508097 0.9 -0.0027967424 1.0 -0.0752782621
 $x$ $AS$ 0.1 0.00048062670 0.2 0.00395841402 0.3 0.01287525177 0.4 0.02728111814 0.5 0.04281856069 0.6 0.05461350578 0.7 0.05592662854 0.8 0.03911508097 0.9 -0.0027967424 1.0 -0.0752782621
 [1] Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 [2] Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443 [3] Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355 [4] Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 [5] Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 [6] Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463 [7] Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 [8] Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319 [9] Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 [10] Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466 [11] Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 [12] Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 [13] Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018 [14] Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 [15] Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 [16] Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 [17] Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 [18] Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 [19] Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 [20] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables