February  2021, 14(2): 615-633. doi: 10.3934/dcdss.2020424

A mathematical model for marine dinoflagellates blooms

1. 

Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France

2. 

Université de Pau et des Pays de l'Adour, UPPA, CNRS, LMAP, Pau, France

Received  December 2019 Published  February 2021 Early access  September 2020

We present a model for the life cycle of a dinoflagellate in order to describe blooms. We prove the mathematical well-posedness of the model and the possibility of extinction in finite time of the alga form meaning that the full population is under the cysts from.

Citation: M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424
References:
[1]

D. Anderson, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52 (2005), 2522-2542. 

[2]

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18 (2005), 891-934. 

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Evolution problems. I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.

[4]

K. Flynn and D. McGillicuddy, Modelling Marine Harmful Algal Blooms: Current Status and Future Prospects, Harmful Algal Blooms: A Compendium Desk References, 3, John Wiley & Sons Ltd, 2018.

[5]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de L'ingénierie Pétrolière, Mathématiques & Applications (Berlin) [Mathematics & Applications], 22, Springer-Verlag, Berlin, 1996.

[6]

O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., to appear. doi: 10.1515/anona-2020-0015.

[7]

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer Science, 2017. doi: 10.1007/978-981-10-0188-8.

[8]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.

[9]

D. J. McGillicuddy, Models of harmful algal blooms: Conceptual, empirical, and numerical approaches, Journal of Marine Systems, 83 (2010), 105-105. 

[10]

H. Ruoying, D. J. McGillicuddy, B. Keafer and D. Anderson, Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling, Journal of Geophysical Research: Oceans, 113 (2008).

show all references

References:
[1]

D. Anderson, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52 (2005), 2522-2542. 

[2]

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18 (2005), 891-934. 

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Evolution problems. I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.

[4]

K. Flynn and D. McGillicuddy, Modelling Marine Harmful Algal Blooms: Current Status and Future Prospects, Harmful Algal Blooms: A Compendium Desk References, 3, John Wiley & Sons Ltd, 2018.

[5]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de L'ingénierie Pétrolière, Mathématiques & Applications (Berlin) [Mathematics & Applications], 22, Springer-Verlag, Berlin, 1996.

[6]

O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., to appear. doi: 10.1515/anona-2020-0015.

[7]

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer Science, 2017. doi: 10.1007/978-981-10-0188-8.

[8]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.

[9]

D. J. McGillicuddy, Models of harmful algal blooms: Conceptual, empirical, and numerical approaches, Journal of Marine Systems, 83 (2010), 105-105. 

[10]

H. Ruoying, D. J. McGillicuddy, B. Keafer and D. Anderson, Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling, Journal of Geophysical Research: Oceans, 113 (2008).

Figure 1.  Sketch of the parts of Alexandrium catenella life we are interested in
[1]

D. Bresch, T. Colin, M. Ghil, Shouhong Wang. Qualitative properties of some evolution equations. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : i-ii. doi: 10.3934/dcds.2004.11.1i

[2]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[3]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[4]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[5]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[6]

Cory D. Hauck, Michael Herty, Giuseppe Visconti. Qualitative properties of mathematical model for data flow. Networks and Heterogeneous Media, 2021, 16 (4) : 513-533. doi: 10.3934/nhm.2021015

[7]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[8]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[9]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[10]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[11]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[12]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[13]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[14]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[15]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[16]

Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331

[17]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14 (1) : i-ii. doi: 10.3934/nhm.20191i

[18]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[19]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[20]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (309)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]