doi: 10.3934/dcdss.2020424

A mathematical model for marine dinoflagellates blooms

1. 

Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France

2. 

Université de Pau et des Pays de l'Adour, UPPA, CNRS, LMAP, Pau, France

Received  December 2019 Published  September 2020

We present a model for the life cycle of a dinoflagellate in order to describe blooms. We prove the mathematical well-posedness of the model and the possibility of extinction in finite time of the alga form meaning that the full population is under the cysts from.

Citation: M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020424
References:
[1]

D. Anderson, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52 (2005), 2522-2542.   Google Scholar

[2]

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18 (2005), 891-934.   Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Evolution problems. I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

K. Flynn and D. McGillicuddy, Modelling Marine Harmful Algal Blooms: Current Status and Future Prospects, Harmful Algal Blooms: A Compendium Desk References, 3, John Wiley & Sons Ltd, 2018. Google Scholar

[5]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de L'ingénierie Pétrolière, Mathématiques & Applications (Berlin) [Mathematics & Applications], 22, Springer-Verlag, Berlin, 1996.  Google Scholar

[6]

O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., to appear. doi: 10.1515/anona-2020-0015.  Google Scholar

[7]

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer Science, 2017. doi: 10.1007/978-981-10-0188-8.  Google Scholar

[8]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.  Google Scholar

[9]

D. J. McGillicuddy, Models of harmful algal blooms: Conceptual, empirical, and numerical approaches, Journal of Marine Systems, 83 (2010), 105-105.   Google Scholar

[10]

H. Ruoying, D. J. McGillicuddy, B. Keafer and D. Anderson, Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling, Journal of Geophysical Research: Oceans, 113 (2008). Google Scholar

show all references

References:
[1]

D. Anderson, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52 (2005), 2522-2542.   Google Scholar

[2]

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18 (2005), 891-934.   Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Evolution problems. I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

K. Flynn and D. McGillicuddy, Modelling Marine Harmful Algal Blooms: Current Status and Future Prospects, Harmful Algal Blooms: A Compendium Desk References, 3, John Wiley & Sons Ltd, 2018. Google Scholar

[5]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de L'ingénierie Pétrolière, Mathématiques & Applications (Berlin) [Mathematics & Applications], 22, Springer-Verlag, Berlin, 1996.  Google Scholar

[6]

O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., to appear. doi: 10.1515/anona-2020-0015.  Google Scholar

[7]

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer Science, 2017. doi: 10.1007/978-981-10-0188-8.  Google Scholar

[8]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.  Google Scholar

[9]

D. J. McGillicuddy, Models of harmful algal blooms: Conceptual, empirical, and numerical approaches, Journal of Marine Systems, 83 (2010), 105-105.   Google Scholar

[10]

H. Ruoying, D. J. McGillicuddy, B. Keafer and D. Anderson, Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling, Journal of Geophysical Research: Oceans, 113 (2008). Google Scholar

Figure 1.  Sketch of the parts of Alexandrium catenella life we are interested in
[1]

D. Bresch, T. Colin, M. Ghil, Shouhong Wang. Qualitative properties of some evolution equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : i-ii. doi: 10.3934/dcds.2004.11.1i

[2]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[3]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[4]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[5]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[6]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[7]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[8]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[9]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[10]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[11]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[12]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[13]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[14]

Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331

[15]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : ⅰ-ⅱ. doi: 10.3934/nhm.20191i

[16]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[19]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[20]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (17)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]