doi: 10.3934/dcdss.2020427

Exact analytical solutions of fractional order telegraph equations via triple Laplace transform

1. 

Department of Mathematics, University of Malakand, Chakadara Dir(L), Khyber, Pakhtunkhwa, Pakistan

2. 

Department of Mathematics, Sun Yat-Sen University, Guangzhou, China

3. 

Department of Mathematics, Çankaya University, 06790 Etimesgut, Ankara, Turkey

* Corresponding author

Received  May 2019 Published  September 2020

In this paper, we study initial/boundary value problems for $ 1+1 $ dimensional and $ 1+2 $ dimensional fractional order telegraph equations. We develop the technique of double and triple Laplace transforms and obtain exact analytical solutions of these problems. The techniques we develop are new and are not limited to only telegraph equations but can be used for exact solutions of large class of linear fractional order partial differential equations

Citation: Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020427
References:
[1]

M. A. Abdou, Adomian decomposition method for solving telegraph equation in charged particle transport, J. Quant. Spectosc. Ra., 95 (2005), 407-414. doi: 10.1016/j.jqsrt.2004.08.045.  Google Scholar

[2]

A. M. O. Anwar, F Jarad, D Baleanu and F Ayaz, Fractional Caputo heat equation within the double Laplace transform, Romanian J. Phys., 58 (2013), 15-22.  Google Scholar

[3]

J. Biazar and M. Eslami, Analytic solution for telegraph equation by differential transform method, Phys. Lett. A, 374 (2010), 2904-2906. doi: 10.1016/j.physleta.2010.05.012.  Google Scholar

[4]

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., (2003) (2003), 3413–3442. doi: 10.1155/S0161171203301486.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Meth. Part. D. E., 24 (2008), 1080-1093. doi: 10.1002/num.20306.  Google Scholar

[6]

M. Dehghan and M. Lakestani, The use of Chebyshev cardinal functions for solution of the secondorder one-dimensional telegraph equation, Numer. Meth. for Part. D. E., 25 (2009), 931-938. doi: 10.1002/num.20382.  Google Scholar

[7]

M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation method, Eng. Anal. Bound. Elem., 34 (2010), 51-59. doi: 10.1016/j.enganabound.2009.07.002.  Google Scholar

[8]

M.Dehghan and A. Mohebbi, High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 25 (2009), 232-243. doi: 10.1002/num.20341.  Google Scholar

[9]

M. Dehghan and A. Ghesmati, Combination of meshless local weak and strong forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 34 (2010), 324-336. doi: 10.1016/j.enganabound.2009.10.010.  Google Scholar

[10]

M. Dehghan and A. Shokri, A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numer. Meth. Part. D. E., 25 (2009), 494-506. doi: 10.1002/num.20357.  Google Scholar

[11]

H. Ding and Y. Zhang, A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation, J. Comput. Appl. Math., 230 (2009), 626-632. doi: 10.1016/j.cam.2009.01.001.  Google Scholar

[12]

H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler Functions and Their Applications, J. Appl. Math., 2011 (2011), Art. ID 298628, 51 pp. doi: 10.1155/2011/298628.  Google Scholar

[13]

R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[14]

F. Jarad and K. Tas, Application of Sumudu and double Sumudu transforms to Caputo-Fractional differential equations, J. Comput. Anal. Appl., 14 (2012), 475-483.  Google Scholar

[15]

T. Khan, K. Shah, A. Khan and R. A. Khan, Solution of fractional order heat equation via triple Laplace transform in two dimensions, Math Meth Appl Sci., 41 (2018), 818-825. doi: 10.1002/mma.4646.  Google Scholar

[16]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.  Google Scholar

[17]

M. Lakestani and B. N. Saray, Numerical solution of telegraph equation using interpolating scalling function, Comp. Math. Appl., 60 (2010), 1964-1972 doi: 10.1016/j.camwa.2010.07.030.  Google Scholar

[18]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006. Google Scholar

[19]

R. K. Mohanty and M. K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 17 (2001), 684-688. doi: 10.1002/num.1034.  Google Scholar

[20]

R. K. Mohanty, An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions, Appl. Math. Comput., 152 (2004), 799-806. doi: 10.1016/S0096-3003(03)00595-2.  Google Scholar

[21]

R. K. Mohanty, M. K. Jain and K. George, On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients, J. Comp. Appl. Math., 72 (1996), 421-431. doi: 10.1016/0377-0427(96)00011-8.  Google Scholar

[22]

R. K. Mohanty, New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, Int. J. Comp. Math., 86 (2009), 2061-2071 doi: 10.1080/00207160801965271.  Google Scholar

[23]

R. K. Mohanty, M. K. Jain and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int. J. Comp. Math., 79 (2002), 133-142. doi: 10.1080/00207160211918.  Google Scholar

[24]

A. Mohebbi and M. Dehghan, High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer. Meth. Part. D. E., 24 (2008), 1222-1235. doi: 10.1002/num.20313.  Google Scholar

[25] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.   Google Scholar
[26]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. for Part. D. E., 26 (2010), 239- 252. doi: 10.1002/num.20442.  Google Scholar

[27]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993).  Google Scholar

[28]

C. Shu, Q. Yao and K. S. Yeo, Block-marching in time with DQ discretization: An efficient method for time-dependent problems, Comput. Methods Appl. Mech. Engrg, 191 (2002), 4587-4597. doi: 10.1016/S0045-7825(02)00387-0.  Google Scholar

show all references

References:
[1]

M. A. Abdou, Adomian decomposition method for solving telegraph equation in charged particle transport, J. Quant. Spectosc. Ra., 95 (2005), 407-414. doi: 10.1016/j.jqsrt.2004.08.045.  Google Scholar

[2]

A. M. O. Anwar, F Jarad, D Baleanu and F Ayaz, Fractional Caputo heat equation within the double Laplace transform, Romanian J. Phys., 58 (2013), 15-22.  Google Scholar

[3]

J. Biazar and M. Eslami, Analytic solution for telegraph equation by differential transform method, Phys. Lett. A, 374 (2010), 2904-2906. doi: 10.1016/j.physleta.2010.05.012.  Google Scholar

[4]

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., (2003) (2003), 3413–3442. doi: 10.1155/S0161171203301486.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Meth. Part. D. E., 24 (2008), 1080-1093. doi: 10.1002/num.20306.  Google Scholar

[6]

M. Dehghan and M. Lakestani, The use of Chebyshev cardinal functions for solution of the secondorder one-dimensional telegraph equation, Numer. Meth. for Part. D. E., 25 (2009), 931-938. doi: 10.1002/num.20382.  Google Scholar

[7]

M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation method, Eng. Anal. Bound. Elem., 34 (2010), 51-59. doi: 10.1016/j.enganabound.2009.07.002.  Google Scholar

[8]

M.Dehghan and A. Mohebbi, High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 25 (2009), 232-243. doi: 10.1002/num.20341.  Google Scholar

[9]

M. Dehghan and A. Ghesmati, Combination of meshless local weak and strong forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 34 (2010), 324-336. doi: 10.1016/j.enganabound.2009.10.010.  Google Scholar

[10]

M. Dehghan and A. Shokri, A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numer. Meth. Part. D. E., 25 (2009), 494-506. doi: 10.1002/num.20357.  Google Scholar

[11]

H. Ding and Y. Zhang, A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation, J. Comput. Appl. Math., 230 (2009), 626-632. doi: 10.1016/j.cam.2009.01.001.  Google Scholar

[12]

H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler Functions and Their Applications, J. Appl. Math., 2011 (2011), Art. ID 298628, 51 pp. doi: 10.1155/2011/298628.  Google Scholar

[13]

R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[14]

F. Jarad and K. Tas, Application of Sumudu and double Sumudu transforms to Caputo-Fractional differential equations, J. Comput. Anal. Appl., 14 (2012), 475-483.  Google Scholar

[15]

T. Khan, K. Shah, A. Khan and R. A. Khan, Solution of fractional order heat equation via triple Laplace transform in two dimensions, Math Meth Appl Sci., 41 (2018), 818-825. doi: 10.1002/mma.4646.  Google Scholar

[16]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.  Google Scholar

[17]

M. Lakestani and B. N. Saray, Numerical solution of telegraph equation using interpolating scalling function, Comp. Math. Appl., 60 (2010), 1964-1972 doi: 10.1016/j.camwa.2010.07.030.  Google Scholar

[18]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006. Google Scholar

[19]

R. K. Mohanty and M. K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 17 (2001), 684-688. doi: 10.1002/num.1034.  Google Scholar

[20]

R. K. Mohanty, An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions, Appl. Math. Comput., 152 (2004), 799-806. doi: 10.1016/S0096-3003(03)00595-2.  Google Scholar

[21]

R. K. Mohanty, M. K. Jain and K. George, On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients, J. Comp. Appl. Math., 72 (1996), 421-431. doi: 10.1016/0377-0427(96)00011-8.  Google Scholar

[22]

R. K. Mohanty, New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, Int. J. Comp. Math., 86 (2009), 2061-2071 doi: 10.1080/00207160801965271.  Google Scholar

[23]

R. K. Mohanty, M. K. Jain and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int. J. Comp. Math., 79 (2002), 133-142. doi: 10.1080/00207160211918.  Google Scholar

[24]

A. Mohebbi and M. Dehghan, High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer. Meth. Part. D. E., 24 (2008), 1222-1235. doi: 10.1002/num.20313.  Google Scholar

[25] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.   Google Scholar
[26]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. for Part. D. E., 26 (2010), 239- 252. doi: 10.1002/num.20442.  Google Scholar

[27]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993).  Google Scholar

[28]

C. Shu, Q. Yao and K. S. Yeo, Block-marching in time with DQ discretization: An efficient method for time-dependent problems, Comput. Methods Appl. Mech. Engrg, 191 (2002), 4587-4597. doi: 10.1016/S0045-7825(02)00387-0.  Google Scholar

[1]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[2]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[3]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[4]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[5]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[12]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[13]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[15]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[18]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[19]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (53)
  • HTML views (158)
  • Cited by (0)

Other articles
by authors

[Back to Top]