doi: 10.3934/dcdss.2020427

Exact analytical solutions of fractional order telegraph equations via triple Laplace transform

1. 

Department of Mathematics, University of Malakand, Chakadara Dir(L), Khyber, Pakhtunkhwa, Pakistan

2. 

Department of Mathematics, Sun Yat-Sen University, Guangzhou, China

3. 

Department of Mathematics, Çankaya University, 06790 Etimesgut, Ankara, Turkey

* Corresponding author

Received  May 2019 Published  September 2020

In this paper, we study initial/boundary value problems for $ 1+1 $ dimensional and $ 1+2 $ dimensional fractional order telegraph equations. We develop the technique of double and triple Laplace transforms and obtain exact analytical solutions of these problems. The techniques we develop are new and are not limited to only telegraph equations but can be used for exact solutions of large class of linear fractional order partial differential equations

Citation: Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020427
References:
[1]

M. A. Abdou, Adomian decomposition method for solving telegraph equation in charged particle transport, J. Quant. Spectosc. Ra., 95 (2005), 407-414. doi: 10.1016/j.jqsrt.2004.08.045.  Google Scholar

[2]

A. M. O. Anwar, F Jarad, D Baleanu and F Ayaz, Fractional Caputo heat equation within the double Laplace transform, Romanian J. Phys., 58 (2013), 15-22.  Google Scholar

[3]

J. Biazar and M. Eslami, Analytic solution for telegraph equation by differential transform method, Phys. Lett. A, 374 (2010), 2904-2906. doi: 10.1016/j.physleta.2010.05.012.  Google Scholar

[4]

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., (2003) (2003), 3413–3442. doi: 10.1155/S0161171203301486.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Meth. Part. D. E., 24 (2008), 1080-1093. doi: 10.1002/num.20306.  Google Scholar

[6]

M. Dehghan and M. Lakestani, The use of Chebyshev cardinal functions for solution of the secondorder one-dimensional telegraph equation, Numer. Meth. for Part. D. E., 25 (2009), 931-938. doi: 10.1002/num.20382.  Google Scholar

[7]

M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation method, Eng. Anal. Bound. Elem., 34 (2010), 51-59. doi: 10.1016/j.enganabound.2009.07.002.  Google Scholar

[8]

M.Dehghan and A. Mohebbi, High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 25 (2009), 232-243. doi: 10.1002/num.20341.  Google Scholar

[9]

M. Dehghan and A. Ghesmati, Combination of meshless local weak and strong forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 34 (2010), 324-336. doi: 10.1016/j.enganabound.2009.10.010.  Google Scholar

[10]

M. Dehghan and A. Shokri, A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numer. Meth. Part. D. E., 25 (2009), 494-506. doi: 10.1002/num.20357.  Google Scholar

[11]

H. Ding and Y. Zhang, A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation, J. Comput. Appl. Math., 230 (2009), 626-632. doi: 10.1016/j.cam.2009.01.001.  Google Scholar

[12]

H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler Functions and Their Applications, J. Appl. Math., 2011 (2011), Art. ID 298628, 51 pp. doi: 10.1155/2011/298628.  Google Scholar

[13]

R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[14]

F. Jarad and K. Tas, Application of Sumudu and double Sumudu transforms to Caputo-Fractional differential equations, J. Comput. Anal. Appl., 14 (2012), 475-483.  Google Scholar

[15]

T. Khan, K. Shah, A. Khan and R. A. Khan, Solution of fractional order heat equation via triple Laplace transform in two dimensions, Math Meth Appl Sci., 41 (2018), 818-825. doi: 10.1002/mma.4646.  Google Scholar

[16]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.  Google Scholar

[17]

M. Lakestani and B. N. Saray, Numerical solution of telegraph equation using interpolating scalling function, Comp. Math. Appl., 60 (2010), 1964-1972 doi: 10.1016/j.camwa.2010.07.030.  Google Scholar

[18]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006. Google Scholar

[19]

R. K. Mohanty and M. K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 17 (2001), 684-688. doi: 10.1002/num.1034.  Google Scholar

[20]

R. K. Mohanty, An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions, Appl. Math. Comput., 152 (2004), 799-806. doi: 10.1016/S0096-3003(03)00595-2.  Google Scholar

[21]

R. K. Mohanty, M. K. Jain and K. George, On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients, J. Comp. Appl. Math., 72 (1996), 421-431. doi: 10.1016/0377-0427(96)00011-8.  Google Scholar

[22]

R. K. Mohanty, New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, Int. J. Comp. Math., 86 (2009), 2061-2071 doi: 10.1080/00207160801965271.  Google Scholar

[23]

R. K. Mohanty, M. K. Jain and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int. J. Comp. Math., 79 (2002), 133-142. doi: 10.1080/00207160211918.  Google Scholar

[24]

A. Mohebbi and M. Dehghan, High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer. Meth. Part. D. E., 24 (2008), 1222-1235. doi: 10.1002/num.20313.  Google Scholar

[25] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.   Google Scholar
[26]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. for Part. D. E., 26 (2010), 239- 252. doi: 10.1002/num.20442.  Google Scholar

[27]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993).  Google Scholar

[28]

C. Shu, Q. Yao and K. S. Yeo, Block-marching in time with DQ discretization: An efficient method for time-dependent problems, Comput. Methods Appl. Mech. Engrg, 191 (2002), 4587-4597. doi: 10.1016/S0045-7825(02)00387-0.  Google Scholar

show all references

References:
[1]

M. A. Abdou, Adomian decomposition method for solving telegraph equation in charged particle transport, J. Quant. Spectosc. Ra., 95 (2005), 407-414. doi: 10.1016/j.jqsrt.2004.08.045.  Google Scholar

[2]

A. M. O. Anwar, F Jarad, D Baleanu and F Ayaz, Fractional Caputo heat equation within the double Laplace transform, Romanian J. Phys., 58 (2013), 15-22.  Google Scholar

[3]

J. Biazar and M. Eslami, Analytic solution for telegraph equation by differential transform method, Phys. Lett. A, 374 (2010), 2904-2906. doi: 10.1016/j.physleta.2010.05.012.  Google Scholar

[4]

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., (2003) (2003), 3413–3442. doi: 10.1155/S0161171203301486.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Meth. Part. D. E., 24 (2008), 1080-1093. doi: 10.1002/num.20306.  Google Scholar

[6]

M. Dehghan and M. Lakestani, The use of Chebyshev cardinal functions for solution of the secondorder one-dimensional telegraph equation, Numer. Meth. for Part. D. E., 25 (2009), 931-938. doi: 10.1002/num.20382.  Google Scholar

[7]

M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation method, Eng. Anal. Bound. Elem., 34 (2010), 51-59. doi: 10.1016/j.enganabound.2009.07.002.  Google Scholar

[8]

M.Dehghan and A. Mohebbi, High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 25 (2009), 232-243. doi: 10.1002/num.20341.  Google Scholar

[9]

M. Dehghan and A. Ghesmati, Combination of meshless local weak and strong forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 34 (2010), 324-336. doi: 10.1016/j.enganabound.2009.10.010.  Google Scholar

[10]

M. Dehghan and A. Shokri, A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numer. Meth. Part. D. E., 25 (2009), 494-506. doi: 10.1002/num.20357.  Google Scholar

[11]

H. Ding and Y. Zhang, A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation, J. Comput. Appl. Math., 230 (2009), 626-632. doi: 10.1016/j.cam.2009.01.001.  Google Scholar

[12]

H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler Functions and Their Applications, J. Appl. Math., 2011 (2011), Art. ID 298628, 51 pp. doi: 10.1155/2011/298628.  Google Scholar

[13]

R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[14]

F. Jarad and K. Tas, Application of Sumudu and double Sumudu transforms to Caputo-Fractional differential equations, J. Comput. Anal. Appl., 14 (2012), 475-483.  Google Scholar

[15]

T. Khan, K. Shah, A. Khan and R. A. Khan, Solution of fractional order heat equation via triple Laplace transform in two dimensions, Math Meth Appl Sci., 41 (2018), 818-825. doi: 10.1002/mma.4646.  Google Scholar

[16]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.  Google Scholar

[17]

M. Lakestani and B. N. Saray, Numerical solution of telegraph equation using interpolating scalling function, Comp. Math. Appl., 60 (2010), 1964-1972 doi: 10.1016/j.camwa.2010.07.030.  Google Scholar

[18]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006. Google Scholar

[19]

R. K. Mohanty and M. K. Jain, An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer. Meth. for Part. D. E., 17 (2001), 684-688. doi: 10.1002/num.1034.  Google Scholar

[20]

R. K. Mohanty, An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions, Appl. Math. Comput., 152 (2004), 799-806. doi: 10.1016/S0096-3003(03)00595-2.  Google Scholar

[21]

R. K. Mohanty, M. K. Jain and K. George, On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients, J. Comp. Appl. Math., 72 (1996), 421-431. doi: 10.1016/0377-0427(96)00011-8.  Google Scholar

[22]

R. K. Mohanty, New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, Int. J. Comp. Math., 86 (2009), 2061-2071 doi: 10.1080/00207160801965271.  Google Scholar

[23]

R. K. Mohanty, M. K. Jain and U. Arora, An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, Int. J. Comp. Math., 79 (2002), 133-142. doi: 10.1080/00207160211918.  Google Scholar

[24]

A. Mohebbi and M. Dehghan, High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer. Meth. Part. D. E., 24 (2008), 1222-1235. doi: 10.1002/num.20313.  Google Scholar

[25] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.   Google Scholar
[26]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. for Part. D. E., 26 (2010), 239- 252. doi: 10.1002/num.20442.  Google Scholar

[27]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993).  Google Scholar

[28]

C. Shu, Q. Yao and K. S. Yeo, Block-marching in time with DQ discretization: An efficient method for time-dependent problems, Comput. Methods Appl. Mech. Engrg, 191 (2002), 4587-4597. doi: 10.1016/S0045-7825(02)00387-0.  Google Scholar

[1]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[2]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[3]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001

[4]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

[5]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[6]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[7]

Xuemei Zhang, Meiqiang Feng. Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2149-2171. doi: 10.3934/cpaa.2018103

[8]

Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

[9]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[10]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[11]

Paul Eloe, Jaganmohan Jonnalagadda. Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2719-2734. doi: 10.3934/dcdss.2020220

[12]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[13]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[14]

Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028

[15]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[16]

Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154

[17]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[18]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[19]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[20]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

2019 Impact Factor: 1.233

Article outline

[Back to Top]