# American Institute of Mathematical Sciences

## Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters

 1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia 2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt 3 Informetrics Research Group Ton Duc Thang University Ho Chi Minh City, Vietnam Faculty of Mathematics and Statistics Ton Duc Thang University Ho Chi Minh City, Vietnam

Received  November 2019 Revised  February 2020 Published  September 2020

The present work explore the dynamics of the cancer model with fractional derivative. The model is formulated in fractional type of Caputo-Fabrizio derivative. We analyze the chaotic behavior of the proposed model with the suggested parameters. Stability results for the fixed points are shown. A numerical scheme is implemented to obtain the graphical results in the sense of Caputo-Fabrizio derivative with various values of the fractional order parameter. Further, we show the graphical results in order to study that the model behave the periodic and quasi periodic limit cycles as well as chaotic behavior for the given set of parameters.

Citation: M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020429
##### References:

show all references

##### References:
The plot shows the dynamics of the model (1), when $\omega = 1$
The plot shows the dynamics of the model (1), when $\omega = 0.95$
The plot shows the dynamics of the model (1), when $\omega=0.9$
The plot shows the dynamics of the model (1), when $\omega=0.85$
The plot shows the dynamics of the model (1), when $\omega = 0.5$
The plot shows the dynamics of the model (1), when $\omega = 1$
The plot shows the dynamics of the model (1), when $\omega=0.9$
The plot shows the dynamics of the model (1), when $\omega = 0.8$
The plot shows the dynamics of the model (1), when $\omega = 1$
The plot shows the dynamics of the model (1), when $\omega=0.9$
The plot shows the dynamics of the model (1), when $h = 0.2$ and $\omega = 0.8$
 [1] Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 [2] Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 [3] Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 [4] Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 [5] Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023 [6] Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013 [7] Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128 [8] Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 [9] Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $L^p$-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028 [10] Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018 [11] Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 [12] Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $G$-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072 [13] Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 [14] Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092 [15] Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 [16] Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 [17] Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035 [18] Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126 [19] Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 [20] Monica Conti, Vittorino Pata, Marta Pellicer, Ramon Quintanilla. A new approach to MGT-thermoviscoelasticity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021052

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables