\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition

Abstract Full Text(HTML) Figure(34) / Table(1) Related Papers Cited by
  • This article is focused on the slip effect in the unsteady flow of MHD Oldroyd-B fluid over a moving vertical plate with velocity $ U_{o}f(t) $. The Laplace transformation and inversion algorithm are used to evaluate the expression for fluid velocity and shear stress. Fractional time derivatives are used to analyze the impact of fractional parameters (memory effect) on the dynamics of the fluid. While making a comparison, it is observed that the fractional-order model is best to explain the memory effect as compared to the classical model. The behavior of slip condition as well as no-slip condition is discussed with all physical quantities. The influence of dimensionless physical parameters like magnetic force $ M $, retardation time $ \lambda_{r} $, fractional parameter $ \alpha $, and relaxation time $ \lambda $ on fluid velocity has been discussed through graphical illustration. Our results suggest that the velocity field decreases by increasing the value of the magnetic field. In the absence of a slip parameter, the strength of the magnetic field is maximum. Furthermore, it is noted that the Atangana-Baleanu derivative in Caputo sense (ABC) is the best to highlight the dynamics of the fluid.

    Mathematics Subject Classification: Primary:93A30, 35Q35, 49-XX, 93A30, 65M32;Secondary:65M32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Geometry of flow

    Figure 2.  Velocity profile of Classical model with variation of $ M $ and $ \beta $ for $ g(t)=sin(t) $

    Figure 3.  Atangana-Baleanu velocity profile for $ g(t)=sin(t) $ with variation of $ M $ and $ \beta $

    Figure 4.  Caputo-Fabrizio velocity profile for $ g(t)=sin(t) $ with variation of $ M $ and $ \beta $

    Figure 5.  Velocity profile of Classical model with variation of $ M $ and $ \beta $ for $ g(t)=H(t) $

    Figure 6.  Atangana-Baleanu velocity profile for $ g(t)=H(t) $ with variation of $ M $ and $ \beta $

    Figure 7.  Caputo-Fabrizio velocity profile for $ g(t)=H(t) $ with variation of $ M $ and $ \beta $

    Figure 8.  Velocity profile of Classical model with variation of $ M $ and $ \beta $ for $ g(t)=t $

    Figure 9.  Atangana-Baleanu velocity profile for $ g(t)=t $ with variation of $ M $ and $ \beta $

    Figure 10.  Caputo-Fabrizio velocity profile for $ g(t)=t $ with variation of $ M $ and $ \beta $

    Figure 11.  Velocity profile of Classical model for $ \lambda $ variation with $ g(t)=sin(t) $

    Figure 12.  Velocity profile of Atangana-Baleanu for $ \lambda $ variation with $ g(t)=sin(t) $

    Figure 13.  Velocity profile of Caputo-Fabrizio for $ \lambda $ with $ g(t)=sin(t) $

    Figure 14.  Velocity profile of Classical model for $ \lambda $ variation with $ g(t)=H(t) $

    Figure 15.  Velocity profile of Atangana-Baleanu for $ \lambda $ variation with $ g(t)=H(t) $

    Figure 16.  Velocity profile of Caputo-Fabrizio for $ \lambda $ with $ g(t)=H(t) $

    Figure 17.  Velocity profile of Classical model for $ \lambda $ variation with $ g(t)=t $

    Figure 18.  Velocity profile of Atangana-Baleanu for $ \lambda $ variation with $ g(t)=t $

    Figure 19.  Velocity profile of Caputo-Fabrizio for $ \lambda $ with $ g(t)=t $

    Figure 20.  Integer order velocity profile for $ \lambda_{r} $ variation with $ g(t)=sin(t) $

    Figure 21.  Atangana-Baleanu velocity profile for $ \lambda_{r} $ variation with $ g(t)=sin(t) $

    Figure 22.  Caputo-Fabrizio velocity profile for $ \lambda_{r} $ variation with $ g(t)=sin(t) $

    Figure 23.  Integer order velocity profile for $ \lambda_{r} $ variation with $ g(t)=H(t) $

    Figure 24.  Atangana-Baleanu velocity profile for $ \lambda_{r} $ variation with $ g(t)=H(t) $

    Figure 25.  Caputo-Fabrizio velocity profile for $ \lambda_{r} $ variation with $ g(t)=H(t) $

    Figure 26.  Integer order velocity profile for $ \lambda_{r} $ variation with $ g(t)=t $

    Figure 27.  Atangana-Baleanu velocity profile for $ \lambda_{r} $ variation with $ g(t)=t $

    Figure 28.  Caputo-Fabrizio velocity profile for $ \lambda_{r} $ variation with $ g(t)=t $

    Figure 29.  Atangana-Baleanu velocity profile with $ \alpha $ variation for $ g(t)=sin(t) $

    Figure 30.  Caputo-Fabrizio velocity profile with $ \alpha $ variation for $ g(t)=sin(t) $

    Figure 31.  Atangana-Baleanu velocity profile with $ \alpha $ variation for $ g(t)=H(t) $

    Figure 32.  Caputo-Fabrizio velocity profile with $ \alpha $ variation for $ g(t)=H(t) $

    Figure 33.  Atangana-Baleanu velocity profile with $ \alpha $ variation for $ g(t)=t $

    Figure 34.  Caputo-Fabrizio velocity profile with $ \alpha $ variation for $ g(t)=t $

    Table 1.  Nomenclature

    Symbol Quantity
    $ u $ Fluid velocity
    $ B_{0} $ Magnitude of applied magnetic field
    $ q $ Laplace transforms parameter
    $ S $ Extra stress tensor
    $ A $ Rivlin Ericken
    $ L $ Velocity gradient
    $ R $ Reynold number
    $ \rho $ Fluid density
    $ \lambda $ Relaxation time
    $ \lambda_{r} $ Retardation time
    $ \mu $ Dynamic viscosity
    $ \upsilon $ Kinematic viscosity
    $ \beta $ slip parameter
    $ \nabla $ gradient operator
    $ \tau $ shear stress
     | Show Table
    DownLoad: CSV
  • [1] T. Abdeljawad, Different type kernel h-fractional differences and their fractional h-sums, Chaos, Solitons and Fractals, 116 (2018), 146-156.  doi: 10.1016/j.chaos.2018.09.022.
    [2] A. Asif, Z. Hammouch and M. B. Riaz, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272.
    [3] A. Atangana, On the new fractional derivative and application to nonlinear fishers reaction-diffusion equation, Appl. Math. Comput, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.
    [4] D. Avc, M. Yavuz and N. Zdemir, Fundamental Solutions to the Cauchy and Dirichlet Problems for a Heat Conduction Equation Equipped with the Caputo-Fabrizio Differentiation. Heat Conduction: Methods, Applications and Research, , Nova Science Publishers, (eds: Jordan Hristov, Rachid Bennacer) Book Chapter, ISBN: 978-1-53614-673-8 2019, 95–107.
    [5] D. Avc, M. Yavuz and N. Zdemir, Fractional Optimal Control of a Diffusive Transport Acting on a Spherical Region, Methods of Mathematical Modelling: Fractional Differential Equations, Taylor and Francis Group Publishing, (eds: Harendra Singh, Devendra Kumar, Dumitru Baleanu) Book Chapter, ISBN: 978-0-367-22008-2 (2019), 63–82.
    [6] D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 083127, 15 pp. doi: 10.1063/1.5096159.
    [7] M. A. Dokuyucu, E. Celik, H. Bulut and H. M. Baskonus, Cancer treatment model with the caputo-fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 93.
    [8] C. FetecauD. VieruC. Fetecau and S. Akhter, General solutions for magnetohydrodynamic natural convection flow with radiative heat transfer and slip condition over a moving plate, Z. Naturforsch. A, 68 (2013), 659-667. 
    [9] M. HajipourA. Jajarmi and D. Baleanu, On the accurate discretization of a highly nonlinear boundary value problem, Numerical Algoritham, 79 (2018), 679-695.  doi: 10.1007/s11075-017-0455-1.
    [10] T. HayatA. M. Siddiqui and S. Asghar, Some simple flows of an Oldroyd-B fluid, International Journal of Engineering Science, 39 (2001), 135-147.  doi: 10.1016/S0020-7225(00)00026-4.
    [11] M. A. ImranM. B. RiazN. A. Shah and A. A. Zafar, Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary, Results in physics, 8 (2018), 1061-1067.  doi: 10.1016/j.rinp.2018.01.036.
    [12] A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 196 (2019), 7.
    [13] A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019), 122524. doi: 10.1016/j.physa.2019.122524.
    [14] S. JamshadT. GulS. IslamM. A. KhanR. A. ShahS. Nasir and H. Rasheed, Flow of unsteady second grade fluid between two vertical plates when one of the plate oscillating and other is stationary, J. Appl. Environ. Biol. Sci., 4 (2014), 41-52. 
    [15] M. A. Khan, Z. Hammouch and D. Baleanu, Modeling the dynamics of hepatitius-E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom, 14 (2019), 311. doi: 10.1051/mmnp/2018074.
    [16] Z. Li, Z. Liu and M. A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivative, Chaos, Solitons and Fractals, (2020), 109528. doi: 10.1016/j.chaos.2019.109528.
    [17] T. MadeehaM. A. ImranN. RazaM. Abdullah and A. Maryam, Wall slip and noninteger order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo-Fabrizio derivatives, Results in physics, 7 (2017), 1887-1898. 
    [18] M. Navier, Memoire sur les lois du mouvement des fluids, Mem. LAcad. Sci. LInst. France, 6 (1823), 389-440. 
    [19] K. R. Rajagopal and R. K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid, Acta Mechanica, 113 (1995), 233-239.  doi: 10.1007/BF01212645.
    [20] M. B. RiazN. A. AsifA. Atangana and M. I. Asjad, Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernal, Discrete and Continuous Dynamical System, 12 (2019), 645-664.  doi: 10.3934/dcdss.2019041.
    [21] N. A. ShahM. A. Imran and F. Miraj, Exact solutions of time fractional free convection flows of viscous fluid over an isothermal vertical plate with caputo and caputo-fabrizio derivatives, J. Prime Res. Math., 13 (2017), 56-74. 
    [22] A. Shakeel, S. Ahmad, H. Khan, N. A. Shah and S. U. Haq, Flows with slip of Oldroyd-B fluids over a moving plate, Advances in Mathematical Physics, (2016), Art. ID 8619634, 9 pp. doi: 10.1155/2016/8619634.
    [23] A. M. SiddiquiT. HaroonM. Zahid and A. Shahzad, Effect of slip condition on unsteady flows of an Oldroyd-B fluid between parallel plates, World Applied Sciences Journal, 13 (2011), 2282-2287. 
    [24] H. Stehfest Algorithm, Numerical inversion of Laplace transforms, Commun. ACM, 13 (1970), 9-47. 
    [25] A. Tassaddiq, MHD flow of a fractional second grade fluid over an inclined heated plate, Chaos, Solitons and Fractals, 123 (2019), 341-346.  doi: 10.1016/j.chaos.2019.04.029.
    [26] DY. Tzou, Macro to Microscale Heat Transfer: The Lagging Behaviour, Washington: Taylor and Francis, (1970).
    [27] S. Ullah, M. A. Khan and M. Farooq, A new fractional model for the dynamics of the hepatitius-B virus using the Caputo-Fabrizio, Eur. Phys. J. Plus., 133 (2018), 237.
    [28] D. Vieru and A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inf. Sci., 7 (2013), 209-219.  doi: 10.12785/amis/070126.
    [29] D. VieruC. Fetecau and C. Fetecau, Time-fractional free convection flow near a vertical plate with newtonian heating and mass diffusion, Therm. Sci., 19 (2015), 85-98.  doi: 10.2298/TSCI15S1S85V.
    [30] H. ZamanZ. Ahmad and M. Ayub, A note on the unsteady incompressible MHD fluid flow with slip conditions and porous walls, ISRN Mathematical Physics, 1 (2013), 1-10.  doi: 10.1155/2013/705296.
    [31] Z. ZhangC. Fu and W. Tan, Linear and nonlinear stability analyses of thermal convection for Oldroyd-B fluids in porous media heated from below, Phys. Fluids, 20 (2008), 84-103. 
  • 加载中

Figures(34)

Tables(1)

SHARE

Article Metrics

HTML views(1554) PDF downloads(441) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return