• Previous Article
    Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case
  • DCDS-S Home
  • This Issue
  • Next Article
    Pata type contractions involving rational expressions with an application to integral equations
October  2021, 14(10): 3641-3657. doi: 10.3934/dcdss.2020434

Feedback stabilization of bilinear coupled hyperbolic systems

1. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

2. 

Department of Industrial Engineering, National Superior School of Mines, Rabat, Morocco

3. 

LERMA, Mohammadia Engineering School, Mohamed V University in Rabat, Morocco

4. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

* Corresponding author: Imad El Harraki

Received  November 2019 Revised  July 2020 Published  October 2021 Early access  November 2020

This paper studies the problem of stabilization of some coupled hyperbolic systems using nonlinear feedback. We give a sufficient condition for exponential stabilization by bilinear feedback control. The specificity of the control used is that it acts on only one equation. The results obtained are illustrated by some examples where a theorem of Mehrenberger has been used for the observability of compactly perturbed systems [18].

Citation: Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434
References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993. 
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010.

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258. 

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10. 

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.

show all references

References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993. 
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010.

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258. 

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10. 

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.

[1]

Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022001

[2]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[3]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[4]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[5]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[6]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations and Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[7]

Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091

[8]

Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1085-1102. doi: 10.3934/dcdss.2021092

[9]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3837-3849. doi: 10.3934/dcdss.2020444

[11]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[12]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[13]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168

[14]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[15]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[16]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[17]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control and Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[18]

Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations and Control Theory, 2021, 10 (2) : 333-351. doi: 10.3934/eect.2020069

[19]

Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control and Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413

[20]

Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (309)
  • HTML views (480)
  • Cited by (0)

[Back to Top]