• Previous Article
    Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species
  • DCDS-S Home
  • This Issue
  • Next Article
    Higher order convergence for a class of set differential equations with initial conditions
doi: 10.3934/dcdss.2020434

Feedback stabilization of bilinear coupled hyperbolic systems

1. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

2. 

Department of Industrial Engineering, National Superior School of Mines, Rabat, Morocco

3. 

LERMA, Mohammadia Engineering School, Mohamed V University in Rabat, Morocco

4. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

* Corresponding author: Imad El Harraki

Received  November 2019 Revised  July 2020 Published  November 2020

This paper studies the problem of stabilization of some coupled hyperbolic systems using nonlinear feedback. We give a sufficient condition for exponential stabilization by bilinear feedback control. The specificity of the control used is that it acts on only one equation. The results obtained are illustrated by some examples where a theorem of Mehrenberger has been used for the observability of compactly perturbed systems [18].

Citation: Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020434
References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.  Google Scholar

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.  Google Scholar

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.  Google Scholar

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.  Google Scholar

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.  Google Scholar

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.  Google Scholar

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993.   Google Scholar
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.  Google Scholar

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.  Google Scholar

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.  Google Scholar

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010. Google Scholar

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.  Google Scholar

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258.   Google Scholar

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.  Google Scholar

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.  Google Scholar

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.  Google Scholar

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10.   Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.  Google Scholar

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.  Google Scholar

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

show all references

References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.  Google Scholar

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.  Google Scholar

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.  Google Scholar

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.  Google Scholar

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.  Google Scholar

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.  Google Scholar

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993.   Google Scholar
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.  Google Scholar

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.  Google Scholar

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.  Google Scholar

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010. Google Scholar

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.  Google Scholar

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258.   Google Scholar

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.  Google Scholar

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.  Google Scholar

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.  Google Scholar

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10.   Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.  Google Scholar

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.  Google Scholar

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

[1]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[4]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[8]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[9]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[10]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[11]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[14]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[15]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[16]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[17]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[18]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[19]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[20]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (77)
  • HTML views (206)
  • Cited by (0)

[Back to Top]