• Previous Article
    Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species
  • DCDS-S Home
  • This Issue
  • Next Article
    Higher order convergence for a class of set differential equations with initial conditions
doi: 10.3934/dcdss.2020434

Feedback stabilization of bilinear coupled hyperbolic systems

1. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

2. 

Department of Industrial Engineering, National Superior School of Mines, Rabat, Morocco

3. 

LERMA, Mohammadia Engineering School, Mohamed V University in Rabat, Morocco

4. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

* Corresponding author: Imad El Harraki

Received  November 2019 Revised  July 2020 Published  November 2020

This paper studies the problem of stabilization of some coupled hyperbolic systems using nonlinear feedback. We give a sufficient condition for exponential stabilization by bilinear feedback control. The specificity of the control used is that it acts on only one equation. The results obtained are illustrated by some examples where a theorem of Mehrenberger has been used for the observability of compactly perturbed systems [18].

Citation: Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020434
References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.  Google Scholar

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.  Google Scholar

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.  Google Scholar

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.  Google Scholar

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.  Google Scholar

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.  Google Scholar

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993.   Google Scholar
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.  Google Scholar

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.  Google Scholar

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.  Google Scholar

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010. Google Scholar

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.  Google Scholar

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258.   Google Scholar

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.  Google Scholar

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.  Google Scholar

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.  Google Scholar

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10.   Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.  Google Scholar

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.  Google Scholar

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

show all references

References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.  Google Scholar

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.  Google Scholar

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.  Google Scholar

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.  Google Scholar

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.  Google Scholar

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.  Google Scholar

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993.   Google Scholar
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.  Google Scholar

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.  Google Scholar

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.  Google Scholar

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010. Google Scholar

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.  Google Scholar

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258.   Google Scholar

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.  Google Scholar

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.  Google Scholar

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.  Google Scholar

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10.   Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.  Google Scholar

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.  Google Scholar

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

[1]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[2]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[3]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[4]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[5]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[6]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[7]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[8]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[9]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[10]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[11]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[12]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[15]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[16]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[17]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[18]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

2019 Impact Factor: 1.233

Article outline

[Back to Top]