• Previous Article
    A robust computational framework for analyzing fractional dynamical systems
  • DCDS-S Home
  • This Issue
  • Next Article
    Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition
October  2021, 14(10): 3747-3761. doi: 10.3934/dcdss.2020435

Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative

1. 

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

2. 

Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa

3. 

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan

* Corresponding author: H. Jafari email: jafari.usern@gmail.com

Received  January 2020 Revised  February 2020 Published  October 2021 Early access  November 2020

In recent years, a new definition of fractional derivative which has a nonlocal and non-singular kernel has been proposed by Atangana and Baleanu. This new definition is called the Atangana-Baleanu derivative. In this paper, we present a new technique to obtain the numerical solution of advection-diffusion equation containing Atangana-Baleanu derivative. For this purpose, we use the operational matrix of fractional integral based on Genocchi polynomials. An error bound is given for the approximation of a bivariate function using Genocchi polynomials. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method.

Citation: S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435
References:
[1]

A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp. doi: 10.1155/2016/4626940.

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.

[3]

A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016). doi: 10.1061/(ASCE)EM.1943-7889.0001091.

[4]

A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429. doi: 10.1140/epjp/i2019-12777-8.

[5]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.

[6]

D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020). doi: 10.1186/s13662-020-02544-w.

[7]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.  doi: 10.18576/pfda/020101.

[8]

Y. ChatibiE. H. El Kinani and A. Ouhadan, Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.  doi: 10.1016/j.chaos.2018.11.017.

[9]

M. Dehghan, Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.  doi: 10.1016/S0096-3003(02)00667-7.

[10]

R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019). doi: 10.1007/s40819-019-0610-6.

[11]

R. M. Ganji and H. Jafari, Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69. 

[12]

R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371. doi: 10.2298/TSCI190729371M.

[13]

R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405. doi: 10.1016/j.chaos.2019.109405.

[14]

M. M. GhalibA. A. ZafarZ. HammouchM. B. Riaz and K. Shabbir, Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.  doi: 10.3934/dcdss.2020037.

[15]

M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941. doi: 10.1016/j.physa.2019.123941.

[16]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019). doi: 10.1016/j.physa.2019.122524.

[17]

A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019). doi: 10.3389/fphy.2019.00196.

[18]

I. Koca, Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.  doi: 10.3934/dcdss.2019031.

[19]

A. Mohebbi and M. Dehghan, High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.  doi: 10.1016/j.apm.2010.01.013.

[20]

S. NematiP. M. Lima and Y. Ordokhani, Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.  doi: 10.1016/j.cam.2012.10.021.

[21]

F. Ozpinar and F. B. M. Belgacem, The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.  doi: 10.3934/dcdss.2019039.

[22]

K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.  doi: 10.1016/j.physa.2019.04.017.

[23] P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972. 
[24]

S.S. RoshanH. Jafari and D. Baleanu, Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.  doi: 10.1002/mma.5098.

[25]

H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17. 

[26]

H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527. doi: 10.1016/j.chaos.2019.109527.

[27]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.

[28]

M. ZerroukatK. Djidjeli and A. Charafi, Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.  doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3.

show all references

References:
[1]

A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp. doi: 10.1155/2016/4626940.

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.

[3]

A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016). doi: 10.1061/(ASCE)EM.1943-7889.0001091.

[4]

A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429. doi: 10.1140/epjp/i2019-12777-8.

[5]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.

[6]

D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020). doi: 10.1186/s13662-020-02544-w.

[7]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.  doi: 10.18576/pfda/020101.

[8]

Y. ChatibiE. H. El Kinani and A. Ouhadan, Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.  doi: 10.1016/j.chaos.2018.11.017.

[9]

M. Dehghan, Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.  doi: 10.1016/S0096-3003(02)00667-7.

[10]

R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019). doi: 10.1007/s40819-019-0610-6.

[11]

R. M. Ganji and H. Jafari, Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69. 

[12]

R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371. doi: 10.2298/TSCI190729371M.

[13]

R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405. doi: 10.1016/j.chaos.2019.109405.

[14]

M. M. GhalibA. A. ZafarZ. HammouchM. B. Riaz and K. Shabbir, Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.  doi: 10.3934/dcdss.2020037.

[15]

M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941. doi: 10.1016/j.physa.2019.123941.

[16]

A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019). doi: 10.1016/j.physa.2019.122524.

[17]

A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019). doi: 10.3389/fphy.2019.00196.

[18]

I. Koca, Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.  doi: 10.3934/dcdss.2019031.

[19]

A. Mohebbi and M. Dehghan, High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.  doi: 10.1016/j.apm.2010.01.013.

[20]

S. NematiP. M. Lima and Y. Ordokhani, Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.  doi: 10.1016/j.cam.2012.10.021.

[21]

F. Ozpinar and F. B. M. Belgacem, The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.  doi: 10.3934/dcdss.2019039.

[22]

K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.  doi: 10.1016/j.physa.2019.04.017.

[23] P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972. 
[24]

S.S. RoshanH. Jafari and D. Baleanu, Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.  doi: 10.1002/mma.5098.

[25]

H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17. 

[26]

H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527. doi: 10.1016/j.chaos.2019.109527.

[27]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.

[28]

M. ZerroukatK. Djidjeli and A. Charafi, Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.  doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3.

Figure 1.  (Example 6.1) The exact solution with $ \alpha = 1 $ and numerical solution with $ \alpha = 0.99 $
Figure 2.  (Example 6.1) The exact and approximate solutions with different values of $ \alpha $ and $ M = 5 $ at $ t = 0.5 $
Figure 3.  (Example 6.2) The exact solution with $ \alpha = 1 $ and numerical solution with $ \alpha = 0.99 $
Figure 4.  (Example 6.2) The exact and the approximate solutions for $ M = 5 $ at $ t = 0.5 $
Figure 5.  (Example 6.2) The exact solution with $ \alpha = 1 $ and numerical solution with $ \alpha = 0.99 $
Figure 6.  (Example 6.3) The exact and approximate solutions for $ M = 5 $ at $ t = 0.5 $
Table 1.  Numerical results of the absolute error when $ \alpha = 0.99 $ and $ t = 1 $ for Example 6.1
$ x $ M=3 M=6
$ 0.0 $ $ 4.39878e-3 $ $ 7.19623e-4 $
$ 0.1 $ $ 2.83179e-3 $ $ 6.56846e-4 $
$ 0.2 $ $ 3.61572e-3 $ $ 1.03531e-3 $
$ 0.3 $ $ 1.44208e-3 $ $ 8.15792e-4 $
$ 0.4 $ $ 8.62515e-4 $ $ 2.26231e-4 $
$ 0.5 $ $ 1.46612e-3 $ $ 5.53976e-4 $
$ 0.6 $ $ 2.43959e-4 $ $ 1.33992e-3 $
$ 0.7 $ $ 3.58188e-3 $ $ 1.91911e-3 $
$ 0.8 $ $ 6.64254e-3 $ $ 2.04788e-3 $
$ 0.9 $ $ 6.52617e-3 $ $ 1.47985e-3 $
$ 1.0 $ $ 3.29430e-4 $ $ 6.37627e-5 $
$ x $ M=3 M=6
$ 0.0 $ $ 4.39878e-3 $ $ 7.19623e-4 $
$ 0.1 $ $ 2.83179e-3 $ $ 6.56846e-4 $
$ 0.2 $ $ 3.61572e-3 $ $ 1.03531e-3 $
$ 0.3 $ $ 1.44208e-3 $ $ 8.15792e-4 $
$ 0.4 $ $ 8.62515e-4 $ $ 2.26231e-4 $
$ 0.5 $ $ 1.46612e-3 $ $ 5.53976e-4 $
$ 0.6 $ $ 2.43959e-4 $ $ 1.33992e-3 $
$ 0.7 $ $ 3.58188e-3 $ $ 1.91911e-3 $
$ 0.8 $ $ 6.64254e-3 $ $ 2.04788e-3 $
$ 0.9 $ $ 6.52617e-3 $ $ 1.47985e-3 $
$ 1.0 $ $ 3.29430e-4 $ $ 6.37627e-5 $
Table 2.  Numerical results of the absolute error when $ \alpha = 0.99 $, $ t = 1 $ for Example 6.2
$ x $ M=3 M=6
$ 0.0 $ $ 2.08503e-2 $ $ 3.99527e-5 $
$ 0.1 $ $ 1.05799e-2 $ $ 7.02578e-5 $
$ 0.2 $ $ 1.21467e-2 $ $ 2.89318e-5 $
$ 0.3 $ $ 4.94776e-3 $ $ 1.02674e-4 $
$ 0.4 $ $ 2.35280e-4 $ $ 1.53367e-4 $
$ 0.5 $ $ 2.36604e-3 $ $ 1.16798e-4 $
$ 0.6 $ $ 1.08676e-2 $ $ 5.12801e-5 $
$ 0.7 $ $ 2.18851e-2 $ $ 2.11059e-5 $
$ 0.8 $ $ 2.91950e-2 $ $ 3.51774e-7 $
$ 0.9 $ $ 2.49148e-2 $ $ 7.30602e-5 $
$ 1.0 $ $ 3.02368e-8 $ $ 2.05050e-6 $
$ x $ M=3 M=6
$ 0.0 $ $ 2.08503e-2 $ $ 3.99527e-5 $
$ 0.1 $ $ 1.05799e-2 $ $ 7.02578e-5 $
$ 0.2 $ $ 1.21467e-2 $ $ 2.89318e-5 $
$ 0.3 $ $ 4.94776e-3 $ $ 1.02674e-4 $
$ 0.4 $ $ 2.35280e-4 $ $ 1.53367e-4 $
$ 0.5 $ $ 2.36604e-3 $ $ 1.16798e-4 $
$ 0.6 $ $ 1.08676e-2 $ $ 5.12801e-5 $
$ 0.7 $ $ 2.18851e-2 $ $ 2.11059e-5 $
$ 0.8 $ $ 2.91950e-2 $ $ 3.51774e-7 $
$ 0.9 $ $ 2.49148e-2 $ $ 7.30602e-5 $
$ 1.0 $ $ 3.02368e-8 $ $ 2.05050e-6 $
Table 3.  Numerical results of the absolute error when $ \alpha = 0.98 $ and $ t = 1 $ for Example 6.3
$ x $ M=3 M=6
$ 0.0 $ $ 9.58422e-3 $ $ 0.00000 $
$ 0.1 $ $ 9.47883e-3 $ $ 1.32252e-3 $
$ 0.2 $ $ 1.1959e-2 $ $ 2.51929e-3 $
$ 0.3 $ $ 7.30440e-3 $ $ 3.47139e-3 $
$ 0.4 $ $ 2.89100e-3 $ $ 4.07656e-3 $
$ 0.5 $ $ 3.24315e-3 $ $ 4.28296e-3 $
$ 0.6 $ $ 9.53273e-3 $ $ 4.07656e-3 $
$ 0.7 $ $ 1.94066e-2 $ $ 3.47139e-3 $
$ 0.8 $ $ 2.71593e-2 $ $ 2.51929e-3 $
$ 0.9 $ $ 2.42335e-2 $ $ 1.32252e-3 $
$ 1.0 $ $ 4.19753e-16 $ $ 4.50522e-17 $
$ x $ M=3 M=6
$ 0.0 $ $ 9.58422e-3 $ $ 0.00000 $
$ 0.1 $ $ 9.47883e-3 $ $ 1.32252e-3 $
$ 0.2 $ $ 1.1959e-2 $ $ 2.51929e-3 $
$ 0.3 $ $ 7.30440e-3 $ $ 3.47139e-3 $
$ 0.4 $ $ 2.89100e-3 $ $ 4.07656e-3 $
$ 0.5 $ $ 3.24315e-3 $ $ 4.28296e-3 $
$ 0.6 $ $ 9.53273e-3 $ $ 4.07656e-3 $
$ 0.7 $ $ 1.94066e-2 $ $ 3.47139e-3 $
$ 0.8 $ $ 2.71593e-2 $ $ 2.51929e-3 $
$ 0.9 $ $ 2.42335e-2 $ $ 1.32252e-3 $
$ 1.0 $ $ 4.19753e-16 $ $ 4.50522e-17 $
[1]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[2]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[3]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[4]

G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027

[5]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[6]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[7]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[8]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[9]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200

[10]

Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

[11]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[12]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[13]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[14]

Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022017

[15]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[16]

Janos Kollar. Polynomials with integral coefficients, equivalent to a given polynomial. Electronic Research Announcements, 1997, 3: 17-27.

[17]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[18]

Purshottam N. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma. Convergence of derivative of Szász type operators involving Charlier polynomials. Mathematical Foundations of Computing, 2022, 5 (1) : 1-15. doi: 10.3934/mfc.2021016

[19]

Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225

[20]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (340)
  • HTML views (459)
  • Cited by (0)

Other articles
by authors

[Back to Top]