
-
Previous Article
Higher order convergence for a class of set differential equations with initial conditions
- DCDS-S Home
- This Issue
-
Next Article
Numerical treatment of Gray-Scott model with operator splitting method
Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative
1. | Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran |
2. | Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa |
3. | Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan |
In recent years, a new definition of fractional derivative which has a nonlocal and non-singular kernel has been proposed by Atangana and Baleanu. This new definition is called the Atangana-Baleanu derivative. In this paper, we present a new technique to obtain the numerical solution of advection-diffusion equation containing Atangana-Baleanu derivative. For this purpose, we use the operational matrix of fractional integral based on Genocchi polynomials. An error bound is given for the approximation of a bivariate function using Genocchi polynomials. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method.
References:
[1] |
A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp.
doi: 10.1155/2016/4626940. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016).
doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[4] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[5] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[6] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020).
doi: 10.1186/s13662-020-02544-w. |
[7] |
M. Caputo and M. Fabrizio,
Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.
doi: 10.18576/pfda/020101. |
[8] |
Y. Chatibi, E. H. El Kinani and A. Ouhadan,
Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.
doi: 10.1016/j.chaos.2018.11.017. |
[9] |
M. Dehghan,
Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
doi: 10.1016/S0096-3003(02)00667-7. |
[10] |
R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019).
doi: 10.1007/s40819-019-0610-6. |
[11] |
R. M. Ganji and H. Jafari, Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69. Google Scholar |
[12] |
R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371.
doi: 10.2298/TSCI190729371M. |
[13] |
R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405.
doi: 10.1016/j.chaos.2019.109405. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941.
doi: 10.1016/j.physa.2019.123941. |
[16] |
A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019).
doi: 10.1016/j.physa.2019.122524. |
[17] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019).
doi: 10.3389/fphy.2019.00196. |
[18] |
I. Koca,
Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.
doi: 10.3934/dcdss.2019031. |
[19] |
A. Mohebbi and M. Dehghan,
High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.
doi: 10.1016/j.apm.2010.01.013. |
[20] |
S. Nemati, P. M. Lima and Y. Ordokhani,
Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.
doi: 10.1016/j.cam.2012.10.021. |
[21] |
F. Ozpinar and F. B. M. Belgacem,
The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.
doi: 10.3934/dcdss.2019039. |
[22] |
K. M. Owolabi and Z. Hammouch,
Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.
doi: 10.1016/j.physa.2019.04.017. |
[23] |
P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.
![]() |
[24] |
S.S. Roshan, H. Jafari and D. Baleanu,
Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.
doi: 10.1002/mma.5098. |
[25] |
H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17. Google Scholar |
[26] |
H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527.
doi: 10.1016/j.chaos.2019.109527. |
[27] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[28] |
M. Zerroukat, K. Djidjeli and A. Charafi,
Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.
doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3. |
show all references
References:
[1] |
A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp.
doi: 10.1155/2016/4626940. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016).
doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[4] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[5] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[6] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020).
doi: 10.1186/s13662-020-02544-w. |
[7] |
M. Caputo and M. Fabrizio,
Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.
doi: 10.18576/pfda/020101. |
[8] |
Y. Chatibi, E. H. El Kinani and A. Ouhadan,
Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.
doi: 10.1016/j.chaos.2018.11.017. |
[9] |
M. Dehghan,
Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
doi: 10.1016/S0096-3003(02)00667-7. |
[10] |
R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019).
doi: 10.1007/s40819-019-0610-6. |
[11] |
R. M. Ganji and H. Jafari, Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69. Google Scholar |
[12] |
R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371.
doi: 10.2298/TSCI190729371M. |
[13] |
R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405.
doi: 10.1016/j.chaos.2019.109405. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941.
doi: 10.1016/j.physa.2019.123941. |
[16] |
A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019).
doi: 10.1016/j.physa.2019.122524. |
[17] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019).
doi: 10.3389/fphy.2019.00196. |
[18] |
I. Koca,
Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.
doi: 10.3934/dcdss.2019031. |
[19] |
A. Mohebbi and M. Dehghan,
High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.
doi: 10.1016/j.apm.2010.01.013. |
[20] |
S. Nemati, P. M. Lima and Y. Ordokhani,
Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.
doi: 10.1016/j.cam.2012.10.021. |
[21] |
F. Ozpinar and F. B. M. Belgacem,
The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.
doi: 10.3934/dcdss.2019039. |
[22] |
K. M. Owolabi and Z. Hammouch,
Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.
doi: 10.1016/j.physa.2019.04.017. |
[23] |
P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.
![]() |
[24] |
S.S. Roshan, H. Jafari and D. Baleanu,
Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.
doi: 10.1002/mma.5098. |
[25] |
H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17. Google Scholar |
[26] |
H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527.
doi: 10.1016/j.chaos.2019.109527. |
[27] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[28] |
M. Zerroukat, K. Djidjeli and A. Charafi,
Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.
doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3. |




M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
[1] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[2] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002 |
[3] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[4] |
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217 |
[5] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[6] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[7] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[8] |
Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021006 |
[9] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[10] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[11] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[12] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[13] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[14] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[15] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[16] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[17] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[18] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021049 |
[19] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[20] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]