# American Institute of Mathematical Sciences

October  2021, 14(10): 3821-3836. doi: 10.3934/dcdss.2020436

## Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator

 a. School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, China b. Department of Mathematics, Texas A & M University, Kingsville, TX 78363-8202, USA c. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia d. College of Science & Technology, Ningbo University, Ningbo, Zhejiang 315211, China

* Corresponding author: Ravi P. Agarwal

All authors equally contributed this manuscript

Received  April 2020 Revised  June 2020 Published  October 2021 Early access  November 2020

Fund Project: This work is supported by NSFC (No.11501342), NSF of Shanxi, China (No.201701D221007), Science and Technology Innovation Project of Shanxi Normal University (No.2019XSY027), the Graduate Innovation Program of Shanxi, China (No.2020SY337) and STIP (Nos.201802068 and 201802069)

In this paper, we study the positive solutions of the Schrödinger elliptic system
 $\begin{equation*} \begin{split} \left\{\begin{array}{ll}{\operatorname{div}(\mathcal{G}(|\nabla y|^{p-2})\nabla y) = b_{1}(|x|) \psi(y)+h_{1}(|x|) \varphi(z),}& {x \in \mathbb{R}^{n}(n \geq 3)}, \\ {\operatorname{div}(\mathcal{G}(|\nabla z|^{p-2})\nabla z) = b_{2}(|x|) \psi(z)+h_{2}(|x|) \varphi(y),} & {x \in \mathbb{R}^{n}},\end{array}\right. \end{split} \end{equation*}$
where
 $\mathcal{G}$
is a nonlinear operator. By using the monotone iterative technique and Arzela-Ascoli theorem, we prove that the system has the positive entire bounded radial solutions. Then, we establish the results for the existence and nonexistence of the positive entire blow-up radial solutions for the nonlinear Schrödinger elliptic system involving a nonlinear operator. Finally, three examples are given to illustrate our results.
Citation: Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3821-3836. doi: 10.3934/dcdss.2020436
##### References:
 [1] D. Baleanu, S. Rezapour and H. Mohammadi, Some existence results on nonlinear fractional differential equations, Phil. Trans. R. Soc. A, 371 (2013), 20120144. doi: 10.1098/rsta.2012.0144.  Google Scholar [2] D. Baleanu, R. P. Agarwal, H. Mohammadi and S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 112. doi: 10.1186/1687-2770-2013-112.  Google Scholar [3] D.-P. Covei, Symmetric solutions for an elliptic partial differential equation that arises in stochastic production planning with production constraints, Appl. Math. Comput., 350 (2019), 190-197.  doi: 10.1016/j.amc.2019.01.015.  Google Scholar [4] D.-P. Covei, Large and entire large solution for a quasilinear problem, Nonlinear Anal., 70 (2009), 1738-1745.  doi: 10.1016/j.na.2008.02.057.  Google Scholar [5] D.-P. Covei, Radial and nonradial solutions for a semilinear elliptic system of Schrödinger type, Funkcial. Ekvac., 54 (2011), 439-449.  doi: 10.1619/fesi.54.439.  Google Scholar [6] A. B. Dkhil, Positive solutions for nonlinear elliptic systems, Electron. J. Differential Equations, 2012 (239) (2012), 1-10.  Google Scholar [7] X. Dong and Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 187 (2019), 93-109.  doi: 10.1016/j.na.2019.03.024.  Google Scholar [8] J. B. Keller, On solutions of $\triangle z = \psi(z)$, Comm. Pure Appl. Math., 10 (1957), 503-510.  doi: 10.1002/cpa.3160100402.  Google Scholar [9] A. V. Lair, Large solution of sublinear/superlinear elliptic equations, J. Math. Anal. Appl., 346 (2008), 99-106.  doi: 10.1016/j.jmaa.2008.05.047.  Google Scholar [10] A. V. Lair, A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems, J. Math. Anal. Appl., 365 (2010), 103-108.  doi: 10.1016/j.jmaa.2009.10.026.  Google Scholar [11] A. V. Lair, Entire large solutions to semilinear elliptic systems, J. Math. Anal. Appl., 382 (2011), 324-333.  doi: 10.1016/j.jmaa.2011.04.051.  Google Scholar [12] A. V. Lair and A. W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differential Euqations, 164 (2000), 380-394.  doi: 10.1006/jdeq.2000.3768.  Google Scholar [13] H. Li, P. Zhang and Z. Zhang, A remark on the existence of entire positve solutions for a class of semilinear elliptic system, J. Math. Anal. Appl., 365 (2010), 338-341.  doi: 10.1016/j.jmaa.2009.10.036.  Google Scholar [14] R. Osserman, On the inequality $\triangle z\geq \psi(z)$, Pacific J. Math., 7 (1957), 1641-1647.   Google Scholar [15] K. Pei, G. Wang and Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312 (2017), 158-168.  doi: 10.1016/j.amc.2017.05.056.  Google Scholar [16] J. Qin, G. Wang, L. Zhang and B. Ahmad, Monotone iterative method for a p-Laplacian boundary value problem with fractional conformable derivatives, Bound. Value Probl., 2019 (2019), 145. doi: 10.1186/s13661-019-1254-5.  Google Scholar [17] Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 321 (2017), 478-486.  doi: 10.1016/j.cam.2017.02.036.  Google Scholar [18] G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560. doi: 10.1016/j.aml.2020.106560.  Google Scholar [19] G. Wang, X. Ren, Z. Bai and W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137.  doi: 10.1016/j.aml.2019.04.024.  Google Scholar [20] G. Wang, Twin iterative positive solutions of fractional q-difference Schrödinger equations, Appl. Math. Lett., 76 (2018), 103-109.  doi: 10.1016/j.aml.2017.08.008.  Google Scholar [21] G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 47 (2015), 1-7.  doi: 10.1016/j.aml.2015.03.003.  Google Scholar [22] G. Wang, K. Pei, R. P. Agarwal, L. Zhang and B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239.  doi: 10.1016/j.cam.2018.04.062.  Google Scholar [23] G. Wang, J. Qin, L. Zhang and D. Baleanu, Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions, Chaos Solitons Fractals, 131 (2020), 109476. doi: 10.1016/j.chaos.2019.109476.  Google Scholar [24] G. Wang, Z. Bai and L. Zhang, Successive iterations for unique positive solution of a nonlinear fractional q-integral boundary value problem, J. Appl. Anal. Comput., 9 (2019), 1204-1215.  doi: 10.11948/2156-907X.20180193.  Google Scholar [25] G. Wang, Z. Yang, L. Zhang and D. Baleanu, Radial solutions of a nonlinear $k$-Hessian system involving a nonlinear operator, Commun. Nonlinear Sci. Numer. Simulat., 91 (2020), 105396. doi: 10.1016/j.cnsns.2020.105396.  Google Scholar [26] D. Ye and F. Zhou, Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dyn. Syst., 12 (2005), 413-424.  doi: 10.3934/dcds.2005.12.413.  Google Scholar [27] Z. Zhang, Existence of entire positive solutions for a class of semilinear elliptic systems, Electron. J. Differential Equations, 2010 (2010), 1-5.   Google Scholar [28] X. Zhang, Y. Wu and Y. Cui, Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator, Appl. Math. Lett., 82 (2018), 85-91.  doi: 10.1016/j.aml.2018.02.019.  Google Scholar [29] X. Zhang, C. Mao, L. Liu and Y. Wu, Exact iterative solution for an abstract fractional dynamic system model for Bioprocess, Qual. Theory Dyn. Syst., 16 (2017), 205-222.  doi: 10.1007/s12346-015-0162-z.  Google Scholar [30] X. Zhang, L. Liu, Y. Wu and L. Caccetta, Entire large solutions for a class of Schrödinger systems with a nonlinear random operator, J. Math. Anal. Appl., 423 (2015), 1650-1659.  doi: 10.1016/j.jmaa.2014.10.068.  Google Scholar [31] X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 464 (2018), 1089-1106.  doi: 10.1016/j.jmaa.2018.04.040.  Google Scholar [32] L. Zhang and W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149. doi: 10.1016/j.aml.2019.106149.  Google Scholar [33] L. Zhang, B. Ahmad and G. Wang, Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions, Appl. Math. Comput., 268 (2015), 388-392.  doi: 10.1016/j.amc.2015.06.049.  Google Scholar [34] L. Zhang, B. Ahmad and G. Wang, The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl. Math. Lett., 31 (2014), 1-6.  doi: 10.1016/j.aml.2013.12.014.  Google Scholar

show all references

##### References:
 [1] D. Baleanu, S. Rezapour and H. Mohammadi, Some existence results on nonlinear fractional differential equations, Phil. Trans. R. Soc. A, 371 (2013), 20120144. doi: 10.1098/rsta.2012.0144.  Google Scholar [2] D. Baleanu, R. P. Agarwal, H. Mohammadi and S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 112. doi: 10.1186/1687-2770-2013-112.  Google Scholar [3] D.-P. Covei, Symmetric solutions for an elliptic partial differential equation that arises in stochastic production planning with production constraints, Appl. Math. Comput., 350 (2019), 190-197.  doi: 10.1016/j.amc.2019.01.015.  Google Scholar [4] D.-P. Covei, Large and entire large solution for a quasilinear problem, Nonlinear Anal., 70 (2009), 1738-1745.  doi: 10.1016/j.na.2008.02.057.  Google Scholar [5] D.-P. Covei, Radial and nonradial solutions for a semilinear elliptic system of Schrödinger type, Funkcial. Ekvac., 54 (2011), 439-449.  doi: 10.1619/fesi.54.439.  Google Scholar [6] A. B. Dkhil, Positive solutions for nonlinear elliptic systems, Electron. J. Differential Equations, 2012 (239) (2012), 1-10.  Google Scholar [7] X. Dong and Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 187 (2019), 93-109.  doi: 10.1016/j.na.2019.03.024.  Google Scholar [8] J. B. Keller, On solutions of $\triangle z = \psi(z)$, Comm. Pure Appl. Math., 10 (1957), 503-510.  doi: 10.1002/cpa.3160100402.  Google Scholar [9] A. V. Lair, Large solution of sublinear/superlinear elliptic equations, J. Math. Anal. Appl., 346 (2008), 99-106.  doi: 10.1016/j.jmaa.2008.05.047.  Google Scholar [10] A. V. Lair, A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems, J. Math. Anal. Appl., 365 (2010), 103-108.  doi: 10.1016/j.jmaa.2009.10.026.  Google Scholar [11] A. V. Lair, Entire large solutions to semilinear elliptic systems, J. Math. Anal. Appl., 382 (2011), 324-333.  doi: 10.1016/j.jmaa.2011.04.051.  Google Scholar [12] A. V. Lair and A. W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differential Euqations, 164 (2000), 380-394.  doi: 10.1006/jdeq.2000.3768.  Google Scholar [13] H. Li, P. Zhang and Z. Zhang, A remark on the existence of entire positve solutions for a class of semilinear elliptic system, J. Math. Anal. Appl., 365 (2010), 338-341.  doi: 10.1016/j.jmaa.2009.10.036.  Google Scholar [14] R. Osserman, On the inequality $\triangle z\geq \psi(z)$, Pacific J. Math., 7 (1957), 1641-1647.   Google Scholar [15] K. Pei, G. Wang and Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312 (2017), 158-168.  doi: 10.1016/j.amc.2017.05.056.  Google Scholar [16] J. Qin, G. Wang, L. Zhang and B. Ahmad, Monotone iterative method for a p-Laplacian boundary value problem with fractional conformable derivatives, Bound. Value Probl., 2019 (2019), 145. doi: 10.1186/s13661-019-1254-5.  Google Scholar [17] Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 321 (2017), 478-486.  doi: 10.1016/j.cam.2017.02.036.  Google Scholar [18] G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560. doi: 10.1016/j.aml.2020.106560.  Google Scholar [19] G. Wang, X. Ren, Z. Bai and W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137.  doi: 10.1016/j.aml.2019.04.024.  Google Scholar [20] G. Wang, Twin iterative positive solutions of fractional q-difference Schrödinger equations, Appl. Math. Lett., 76 (2018), 103-109.  doi: 10.1016/j.aml.2017.08.008.  Google Scholar [21] G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 47 (2015), 1-7.  doi: 10.1016/j.aml.2015.03.003.  Google Scholar [22] G. Wang, K. Pei, R. P. Agarwal, L. Zhang and B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239.  doi: 10.1016/j.cam.2018.04.062.  Google Scholar [23] G. Wang, J. Qin, L. Zhang and D. Baleanu, Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions, Chaos Solitons Fractals, 131 (2020), 109476. doi: 10.1016/j.chaos.2019.109476.  Google Scholar [24] G. Wang, Z. Bai and L. Zhang, Successive iterations for unique positive solution of a nonlinear fractional q-integral boundary value problem, J. Appl. Anal. Comput., 9 (2019), 1204-1215.  doi: 10.11948/2156-907X.20180193.  Google Scholar [25] G. Wang, Z. Yang, L. Zhang and D. Baleanu, Radial solutions of a nonlinear $k$-Hessian system involving a nonlinear operator, Commun. Nonlinear Sci. Numer. Simulat., 91 (2020), 105396. doi: 10.1016/j.cnsns.2020.105396.  Google Scholar [26] D. Ye and F. Zhou, Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dyn. Syst., 12 (2005), 413-424.  doi: 10.3934/dcds.2005.12.413.  Google Scholar [27] Z. Zhang, Existence of entire positive solutions for a class of semilinear elliptic systems, Electron. J. Differential Equations, 2010 (2010), 1-5.   Google Scholar [28] X. Zhang, Y. Wu and Y. Cui, Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator, Appl. Math. Lett., 82 (2018), 85-91.  doi: 10.1016/j.aml.2018.02.019.  Google Scholar [29] X. Zhang, C. Mao, L. Liu and Y. Wu, Exact iterative solution for an abstract fractional dynamic system model for Bioprocess, Qual. Theory Dyn. Syst., 16 (2017), 205-222.  doi: 10.1007/s12346-015-0162-z.  Google Scholar [30] X. Zhang, L. Liu, Y. Wu and L. Caccetta, Entire large solutions for a class of Schrödinger systems with a nonlinear random operator, J. Math. Anal. Appl., 423 (2015), 1650-1659.  doi: 10.1016/j.jmaa.2014.10.068.  Google Scholar [31] X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 464 (2018), 1089-1106.  doi: 10.1016/j.jmaa.2018.04.040.  Google Scholar [32] L. Zhang and W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149. doi: 10.1016/j.aml.2019.106149.  Google Scholar [33] L. Zhang, B. Ahmad and G. Wang, Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions, Appl. Math. Comput., 268 (2015), 388-392.  doi: 10.1016/j.amc.2015.06.049.  Google Scholar [34] L. Zhang, B. Ahmad and G. Wang, The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl. Math. Lett., 31 (2014), 1-6.  doi: 10.1016/j.aml.2013.12.014.  Google Scholar
 [1] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [2] Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 [3] Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051 [4] Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 [5] Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 [6] Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 [7] Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 [8] Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11 [9] Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 [10] Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 [11] Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 [12] Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 [13] Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 [14] Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555 [15] Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 [16] Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597 [17] Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809 [18] Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 [19] Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025 [20] Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

2020 Impact Factor: 2.425

Article outline