doi: 10.3934/dcdss.2020439

A generalization of a criterion for the existence of solutions to semilinear elliptic equations

Université de Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France

1 Pierre Baras died on April 22nd, 2020. He was still working on a final version of this article but unfortunately could not submit it. This version is essentially the first one he submitted, except for a few technical corrections made with the help of the referee. We would like to express our sincere thanks to the referee for his fruitful help, as well as to "Maha Daoud" who kindly rebuilt the latex source from the pdf submission.
A brief tribute describing some of Pierre Baras' actions may be found just after the preface. The Guest Editors.

Published  October 2020

We prove an abstract result of existence of "good" generalized subsolutions for convex operators. Its application to semilinear elliptic equations leads to an extension of results by P.B-M.Pierre concerning a criterion for the existence of solutions to a semilinear elliptic or parabolic equation with a convex nonlinearity. We apply this result to the model problem $ -\Delta u = a |\nabla u|^p+ b|u|^q+f $ with Dirichlet boundary conditions where $ a,b>0 $, $ p,q>1 $. No other condition is made on $ p $ and $ q $.

Citation: Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020439
References:
[1]

D. R. Adams and M. Pierre, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41 (1991), 117-135.  doi: 10.5802/aif.1251.  Google Scholar

[2]

N. E. Alaa and M. Pierre, Weak solutions for some quasi-linear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23-35.  doi: 10.1137/0524002.  Google Scholar

[3]

B. AbdellaouiA. Attar and E.-H. Laamri, On the existence of positive solutions to semilinear elliptic systems involving gradient term, Appl. Anal., 98 (2019), 1289-1306.  doi: 10.1080/00036811.2017.1419204.  Google Scholar

[4]

T. Andô, On fundamental properties of a Banach space with cone, Pacific J. Math., 12 (1962), 1163-1169.  doi: 10.2140/pjm.1962.12.1163.  Google Scholar

[5]

A. Attar, R. Bentifour and E.-H. Laamri, Nonlinear elliptic systems with coupled gradient terms, Acta Appl. Math., (2020), https://doi.org/10.1007/s10440-020-00329-7. doi: 10.1007/s10440-020-00329-7.  Google Scholar

[6]

P. Baras, Semilinear problem with convex nonlinearity, Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), 202–215, Pitman Res. Notes Math. Ser., 208, Longman Sci. Tech., Harlow, (1989).  Google Scholar

[7]

P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal., 18 (1984), 111-149.  doi: 10.1080/00036818408839514.  Google Scholar

[8]

P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 185-212.  doi: 10.1016/S0294-1449(16)30402-4.  Google Scholar

[9]

A. Brønsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc., 16 (1965), 605-611.  doi: 10.1090/S0002-9939-1965-0178103-8.  Google Scholar

[10]

N. Dunford and J. T. Schwartz, Linear Operators, Pure and Applied Mathematics, Vol. 7 Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London 1958.  Google Scholar

[11]

J. R. Giles, Convex Analysis with Application in Differentiation of Convex Functions, Research Notes in Mathematics, Pitman, 58, Boston, Mass.-London, 1982.  Google Scholar

[12]

N. GrenonF. Murat and A. Porretta, A priori estimates and existence for elliptic equations with gradient dependent terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 137-205.   Google Scholar

[13]

K. HanssonV. G. Maz'ya and I. E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat., 37 (1999), 87-120.  doi: 10.1007/BF02384829.  Google Scholar

[14]

S. S. Kutateladze, Convex operators, Russian Uspekhi Mat. Nauk, 34 (1979), 167-196.   Google Scholar

[15]

T. Mengesha and N. C. Phuc, Quasilinear Riccati type equations with distributional data in Morrey space framework, J. Differential Equations, 260 (2016), 5421-5449.  doi: 10.1016/j.jde.2015.12.007.  Google Scholar

[16]

R. T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc., 123 (1966), 46-63.  doi: 10.1090/S0002-9947-1966-0192318-X.  Google Scholar

[17]

R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), 209-216.  doi: 10.2140/pjm.1970.33.209.  Google Scholar

[18]

D. V. Rutski, Linear selections of superlinear set-valued maps with some applications to analysis, arXiv: 1206.3337, (2012). Google Scholar

[19]

M. Théra, Subdifferential calculus for convex operators, J. Math. Anal. Appl., 80 (1981), 78-91.  doi: 10.1016/0022-247X(81)90093-7.  Google Scholar

show all references

References:
[1]

D. R. Adams and M. Pierre, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41 (1991), 117-135.  doi: 10.5802/aif.1251.  Google Scholar

[2]

N. E. Alaa and M. Pierre, Weak solutions for some quasi-linear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23-35.  doi: 10.1137/0524002.  Google Scholar

[3]

B. AbdellaouiA. Attar and E.-H. Laamri, On the existence of positive solutions to semilinear elliptic systems involving gradient term, Appl. Anal., 98 (2019), 1289-1306.  doi: 10.1080/00036811.2017.1419204.  Google Scholar

[4]

T. Andô, On fundamental properties of a Banach space with cone, Pacific J. Math., 12 (1962), 1163-1169.  doi: 10.2140/pjm.1962.12.1163.  Google Scholar

[5]

A. Attar, R. Bentifour and E.-H. Laamri, Nonlinear elliptic systems with coupled gradient terms, Acta Appl. Math., (2020), https://doi.org/10.1007/s10440-020-00329-7. doi: 10.1007/s10440-020-00329-7.  Google Scholar

[6]

P. Baras, Semilinear problem with convex nonlinearity, Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), 202–215, Pitman Res. Notes Math. Ser., 208, Longman Sci. Tech., Harlow, (1989).  Google Scholar

[7]

P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal., 18 (1984), 111-149.  doi: 10.1080/00036818408839514.  Google Scholar

[8]

P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 185-212.  doi: 10.1016/S0294-1449(16)30402-4.  Google Scholar

[9]

A. Brønsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc., 16 (1965), 605-611.  doi: 10.1090/S0002-9939-1965-0178103-8.  Google Scholar

[10]

N. Dunford and J. T. Schwartz, Linear Operators, Pure and Applied Mathematics, Vol. 7 Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London 1958.  Google Scholar

[11]

J. R. Giles, Convex Analysis with Application in Differentiation of Convex Functions, Research Notes in Mathematics, Pitman, 58, Boston, Mass.-London, 1982.  Google Scholar

[12]

N. GrenonF. Murat and A. Porretta, A priori estimates and existence for elliptic equations with gradient dependent terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 137-205.   Google Scholar

[13]

K. HanssonV. G. Maz'ya and I. E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat., 37 (1999), 87-120.  doi: 10.1007/BF02384829.  Google Scholar

[14]

S. S. Kutateladze, Convex operators, Russian Uspekhi Mat. Nauk, 34 (1979), 167-196.   Google Scholar

[15]

T. Mengesha and N. C. Phuc, Quasilinear Riccati type equations with distributional data in Morrey space framework, J. Differential Equations, 260 (2016), 5421-5449.  doi: 10.1016/j.jde.2015.12.007.  Google Scholar

[16]

R. T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc., 123 (1966), 46-63.  doi: 10.1090/S0002-9947-1966-0192318-X.  Google Scholar

[17]

R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), 209-216.  doi: 10.2140/pjm.1970.33.209.  Google Scholar

[18]

D. V. Rutski, Linear selections of superlinear set-valued maps with some applications to analysis, arXiv: 1206.3337, (2012). Google Scholar

[19]

M. Théra, Subdifferential calculus for convex operators, J. Math. Anal. Appl., 80 (1981), 78-91.  doi: 10.1016/0022-247X(81)90093-7.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]