[1]
|
S.-S. Chen, C.-Y. Cheng and Y. Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, Journal of Mathematical Analysis and Applications, 442 (2016), 642-672.
doi: 10.1016/j.jmaa.2016.05.003.
|
[2]
|
R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, Journal of Mathematical Biology, 46 (2003), 425-444.
doi: 10.1007/s00285-002-0191-5.
|
[3]
|
A. M. Elaiw and E. Kh. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Mathematics, 7 (2019), Article Number 157.
doi: 10.3390/math7020157.
|
[4]
|
A. M. Elaiw, E. Kh. Elnahary and A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Advances in Difference Equations, (2018) Paper No. 85, 36 pp.
doi: 10.1186/s13662-018-1523-0.
|
[5]
|
A. M. Elaiw, A. A. Raezah and S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Advances in Difference Equations, (2018) Paper No. 414, 25 pp.
doi: 10.1186/s13662-018-1869-3.
|
[6]
|
A. M. Elaiw and N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Mathematical Methods in the Applied Sciences, 41 (2018), 6645-6672.
doi: 10.1002/mma.5182.
|
[7]
|
A. M. Elaiw and A. D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Applied Mathematics and Computation, 367 (2020), Article No. 124758.
doi: 10.1016/j.amc.2019.124758.
|
[8]
|
A. M. Elaiw and M. A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity, Journal of Difference Equations and Applications, 25 (2019), 1149-1172.
doi: 10.1080/10236198.2019.1662411.
|
[9]
|
L. Gibelli, A. Elaiw, M. A. Alghamdi and A. M. Althiabi, Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Mathematical Models and Methods in Applied Sciences, 27 (2017), 617-640.
doi: 10.1142/S0218202517500117.
|
[10]
|
F. Graw and A. S. Perelson, Modeling viral spread, Annual Review of Virology, 3 (2016), 555-572.
doi: 10.1146/annurev-virology-110615-042249.
|
[11]
|
J. K. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[12]
|
G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM Journal of Applied Mathematics, 70 (2010), 2693-2708.
doi: 10.1137/090780821.
|
[13]
|
S. Iwami, J. S. Takeuchi, S. Nakaoka, F. Mammano, F. Clavel, H. Inaba, T. Kobayashi, N. Misawa, K. Aihara, Y. Koyanagi and K. Sato, Cell-to-cell infection by HIV contributes over half of virus infection, Elife 4 (2015), e08150.
doi: 10.7554/eLife.08150.
|
[14]
|
C. Jolly and Q. Sattentau, Retroviral spread by induction of virological synapses, Traffic, 5 (2004), 643-650.
doi: 10.1111/j.1600-0854.2004.00209.x.
|
[15]
|
N. L. Komarova and D. Wodarz, Virus dynamics in the presence of synaptic transmission, Mathematical Biosciences, 242 (2013), 161-171.
doi: 10.1016/j.mbs.2013.01.003.
|
[16]
|
P. D. Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM Journal of Applied Mathematics, 63 (2003), 1313-1327.
doi: 10.1137/S0036139902406905.
|
[17]
|
M. A. Nowak and C. R. M. Bangham., Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
doi: 10.1126/science.272.5258.74.
|
[18]
|
K. M. Owolabi, Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives, Chaos, Solitons & Fractals, 122 (2019), 89-101.
doi: 10.1016/j.chaos.2019.03.014.
|
[19]
|
A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz and D. D. Ho, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188-191.
doi: 10.1038/387188a0.
|
[20]
|
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41 (1999), 3-44.
doi: 10.1137/S0036144598335107.
|
[21]
|
H. Sato, J. Orenstein, D. Dimitrov and M. Martin, Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles, Virology, 186 (1992), 712-724.
doi: 10.1016/0042-6822(92)90038-Q.
|
[22]
|
H. Shu, Y. Chen and L. Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, Journal of Dynamics and Differential Equations, 30 (2018), 1817-1836.
doi: 10.1007/s10884-017-9622-2.
|
[23]
|
A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo and D. Baltimore, Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95-98.
doi: 10.1038/nature10347.
|
[24]
|
Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Mathematical Biosciences, 270 (2015), 183-191.
doi: 10.1016/j.mbs.2015.05.001.
|
[25]
|
J. Wang, C. Qin, Y. Chen and X. Wang, Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, Mathematical Biosciences and Engineering, 16 (2019), 2587-2612.
doi: 10.3934/mbe.2019130.
|