# American Institute of Mathematical Sciences

• Previous Article
Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space
• DCDS-S Home
• This Issue
• Next Article
Darcy-Forchheimer relation in Magnetohydrodynamic Jeffrey nanofluid flow over stretching surface

## Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection

 1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 2 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt 3 Department of Mathematics, Faculty of Science, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia 4 Department of Physics, College of Sciences, University of Bisha, Bisha 61922, P.O. Box 344, Saudi Arabia 5 Department of Mathematics, Faculty of Science, Gauhati University, Guwahati 781014, India

* Corresponding author: A. M. Elaiw

Received  November 2019 Revised  January 2020 Published  November 2020

This paper studies an $(n+2)$-dimensional nonlinear HIV dynamics model that characterizes the interactions of HIV particles, susceptible CD4$^{+}$ T cells and $n$-stages of infected CD4$^{+}$ T cells. Both virus-to-cell and cell-to-cell infection modes have been incorporated into the model. The incidence rates of viral and cellular infection as well as the production and death rates of all compartments are modeled by general nonlinear functions. We have revealed that the solutions of the system are nonnegative and bounded, which ensures the well-posedness of the proposed model. The basic reproduction number $\Re_{0}$ is determined which insures the existence of the two equilibria of the model under consideration. A set of conditions on the general functions has been established which is sufficient to investigate the global stability of the model's equilibria. The global asymptotic stability of the two equilibria is proven by utilizing Lyapunov function and LaSalle's invariance principle. We have proven that if $\Re_{0}\leq1$, then the infection-free equilibrium is globally asymptotically stable, and if $\Re _{0}>1$, then the chronic-infection equilibrium is globally asymptotically stable. The theoretical results are illustrated by numerical simulations of the model with specific forms of the general functions.

Citation: A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020441
##### References:

show all references

##### References:
Solution trajectories of system (27)
Some values of the parameters of model (27)
 Parameter Value Parameter Value Parameter Value $\rho$ $10$ $\beta_{2}$ Varied $d_{2}$ $1$ $\alpha$ $0.01$ $b_{1}$ $0.6$ $d_{3}$ $5$ $\varsigma$ $0.005$ $b_{2}$ $0.7$ $\varepsilon$ $1.5$ $S_{\max}$ $1200$ $b_{3}$ $0.8$ $\beta_{1}$ Varied $d_{1}$ $0.2$
 Parameter Value Parameter Value Parameter Value $\rho$ $10$ $\beta_{2}$ Varied $d_{2}$ $1$ $\alpha$ $0.01$ $b_{1}$ $0.6$ $d_{3}$ $5$ $\varsigma$ $0.005$ $b_{2}$ $0.7$ $\varepsilon$ $1.5$ $S_{\max}$ $1200$ $b_{3}$ $0.8$ $\beta_{1}$ Varied $d_{1}$ $0.2$
 [1] Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215 [2] Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749 [3] Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995 [4] Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson. An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences & Engineering, 2004, 1 (2) : 267-288. doi: 10.3934/mbe.2004.1.267 [5] Wenbo Cheng, Wanbiao Ma, Songbai Guo. A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis. Communications on Pure & Applied Analysis, 2016, 15 (3) : 795-806. doi: 10.3934/cpaa.2016.15.795 [6] Jaouad Danane, Karam Allali. Optimal control of an HIV model with CTL cells and latently infected cells. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 207-225. doi: 10.3934/naco.2019048 [7] Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 [8] Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 [9] Kaifa Wang, Yu Jin, Aijun Fan. The effect of immune responses in viral infections: A mathematical model view. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3379-3396. doi: 10.3934/dcdsb.2014.19.3379 [10] Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513 [11] Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296 [12] Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences & Engineering, 2010, 7 (1) : 171-185. doi: 10.3934/mbe.2010.7.171 [13] Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 [14] Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 [15] Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 [16] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [17] Andrey V. Melnik, Andrei Korobeinikov. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1019-1034. doi: 10.3934/mbe.2011.8.1019 [18] Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105 [19] Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431 [20] Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables