# American Institute of Mathematical Sciences

## Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative

 1 Department of Mathematics, Faculty of Sciences University of Bougara, U.M.B.B., Algeria 2 Dynamic of Engines and Vibroacoustic Laboratory, U.M.B.B., Algeria 3 Department of Mathematical Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 4 Department of Mathematics, Çankaya University 06790, Ankara, Turkey 5 Department of Mathematics, Faculty of Sciences University of M'hamed Bougara, UMBB, Algeria 6 Laboratory of Dynamical Systems, Faculty of Mathematics, U.S.T.H.B., Algeria 7 Department of Mathematics and Physical Sciences, Prince Sultan University, P. O. Box 66833, Riyadh, 11586, KSA 8 Department of Medical Research, China Medical University, 40402, Taichung, Taiwan 9 Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

Received  November 2019 Revised  April 2020 Published  November 2020

This paper studies a class of fourth point singular boundary value problem of $p$-Laplacian operator in the setting of a specific kind of conformable derivatives. By using the upper and lower solutions method and fixed point theorems on cones., necessary and sufficient conditions for the existence of positive solutions are obtained. In addition, we investigate the dependence of the solution on the order of the conformable differential equation and on the initial conditions.

Citation: Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020442
##### References:
 [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar [2] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.  doi: 10.1016/S0022-247X(86)80006-3.  Google Scholar [3] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar [4] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505.  doi: 10.1016/j.jmaa.2005.02.052.  Google Scholar [5] A. Cabada, P. Habets and R. L. Pouso, Optimal existence conditions for $\varphi$ -Laplacian equations with upper and lower solutions in the reversed order, J. Differential Equations, 166 (2000), 385-401.  doi: 10.1006/jdeq.2000.3803.  Google Scholar [6] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403-411.  doi: 10.1016/j.jmaa.2011.11.065.  Google Scholar [7] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 1-13.   Google Scholar [8] G. Chai and S. Hu, Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Difference Equ., 2014 (2014), 17 pp. doi: 10.1186/1687-1847-2014-90.  Google Scholar [9] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton Fract., 28 (2006), 923-929.  doi: 10.1016/j.chaos.2005.08.199.  Google Scholar [10] W. Chen and Y. Liang, New methodologies in fractional and fractal derivatives modeling, Chaos Solitons Fractals, 102 (2017), 72-77.  doi: 10.1016/j.chaos.2017.03.066.  Google Scholar [11] Y. Chen and Y. Li, The existence of positive solutions for boundary value problem of nonlinear fractional differential equations, Abst. Appl. Anal. (2014), Art. ID 681513, 7 pp. doi: 10.1155/2014/681513.  Google Scholar [12] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, vol 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar [13] X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of $p$-Laplacian with fractional derivative, Bound. Value Probl., (2017), Paper No. 5, 15 pp. doi: 10.1186/s13661-016-0735-z.  Google Scholar [14] D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports Math. Sci. Eng., vol. 5, Academic Press, Inc., Boston, MA, 1988.  Google Scholar [15] D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for the one-dimensional $p$ -Laplacian, J. Math. Anal. Appl., 252 (2000), 631-648.  doi: 10.1006/jmaa.2000.7012.  Google Scholar [16] D. Ji, Z. Bai and W. Ge, The existence of countably many positive solutions for singular multipoint boundary value problems, Nonlinear Anal., 72 (2010), 955-964.  doi: 10.1016/j.na.2009.07.031.  Google Scholar [17] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar [18] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, B.V., Amsterdam, 2006.  Google Scholar [19] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9 (1983), 7-10.   Google Scholar [20] S. J. Linz and J. C. Sprott, Elementary chaotic flow, Phys. Lett. A, 259 (1999), 240-245.  doi: 10.1016/S0375-9601(99)00450-8.  Google Scholar [21] X. Liu and M. Jia, Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., 59 (2010), 2880-2886.  doi: 10.1016/j.camwa.2010.02.005.  Google Scholar [22] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994. doi: 10.1142/2352.  Google Scholar [23] D. O'Regan, Solvability of some fourth (and higher) order singular boundary value problems, J. Math. Anal. Appl., 161 (1991), 78-116.  doi: 10.1016/0022-247X(91)90363-5.  Google Scholar [24] I. Podlubny, Fractional Differential Equations. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar [25] T. Ren and X. Chen, Positive solutions of fractional differential equation with $p$ -Laplacian operator, Abstr. Appl. Anal., 2013, Art ID 789836, 7 pp. doi: 10.1155/2013/789836.  Google Scholar [26] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar [27] J. Schroder, Fourth order two-point boundary value problems; estimates by two-sided bounds, Nonlinear Anal., 8 (1984), 107-114.  doi: 10.1016/0362-546X(84)90063-4.  Google Scholar [28] K. Sheng, W. Zhang and Z. Bai, Positive solutions to fractional boundary-value problems with $p$ -Laplacian on time scales, Bound. Value Prob., 2018 (2018), Paper No. 70, 15 pp. doi: 10.1186/s13661-018-0990-2.  Google Scholar [29] J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with $p$ -Laplacian operator, Abstr. Appl. Anal., 2010, Art. ID 971824, 12 pp. doi: 10.1155/2010/971824.  Google Scholar [30] Z. Wei, A class of fourth order singular boundary value problems, Appl. Math. Comput., 153 (2004), 865-884.  doi: 10.1016/S0096-3003(03)00683-0.  Google Scholar [31] Y. Wei, Z. Bai and S. Sun, On positive solutions for some second-order three-point boundary value problems with convection term, J. Inequal. Appl., 2019 (2019), Paper No. 72, 11 pp. doi: 10.1186/s13660-019-2029-3.  Google Scholar [32] P. Yan, Nonresonance for one-dimensional$p$ -Laplacian with regular restoring, J. Math. Anal. Appl., 285 (2003), 141-154.  doi: 10.1016/S0022-247X(03)00383-4.  Google Scholar [33] Y. Zhang, Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance, J. Inequal. Appl., 2018 (2018), Paper No. 198, 17 pp. doi: 10.1186/s13660-018-1792-x.  Google Scholar [34] X. Zhang and L. Liu, Positive solutions of fourth-order four-point boundary value problems with$p$-Laplacian operator, J. Math. Anal. Appl., 336 (2007), 1414-–1423. doi: 10.1016/j.jmaa.2007.03.015.  Google Scholar [35] X. Zhang and L. Liu, A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with $p$ -Laplacian, Nonlinear Anal., 68 (2008), 3127-3137.  doi: 10.1016/j.na.2007.03.006.  Google Scholar

show all references

##### References:
 [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar [2] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.  doi: 10.1016/S0022-247X(86)80006-3.  Google Scholar [3] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar [4] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505.  doi: 10.1016/j.jmaa.2005.02.052.  Google Scholar [5] A. Cabada, P. Habets and R. L. Pouso, Optimal existence conditions for $\varphi$ -Laplacian equations with upper and lower solutions in the reversed order, J. Differential Equations, 166 (2000), 385-401.  doi: 10.1006/jdeq.2000.3803.  Google Scholar [6] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403-411.  doi: 10.1016/j.jmaa.2011.11.065.  Google Scholar [7] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 1-13.   Google Scholar [8] G. Chai and S. Hu, Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Difference Equ., 2014 (2014), 17 pp. doi: 10.1186/1687-1847-2014-90.  Google Scholar [9] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton Fract., 28 (2006), 923-929.  doi: 10.1016/j.chaos.2005.08.199.  Google Scholar [10] W. Chen and Y. Liang, New methodologies in fractional and fractal derivatives modeling, Chaos Solitons Fractals, 102 (2017), 72-77.  doi: 10.1016/j.chaos.2017.03.066.  Google Scholar [11] Y. Chen and Y. Li, The existence of positive solutions for boundary value problem of nonlinear fractional differential equations, Abst. Appl. Anal. (2014), Art. ID 681513, 7 pp. doi: 10.1155/2014/681513.  Google Scholar [12] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, vol 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar [13] X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of $p$-Laplacian with fractional derivative, Bound. Value Probl., (2017), Paper No. 5, 15 pp. doi: 10.1186/s13661-016-0735-z.  Google Scholar [14] D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports Math. Sci. Eng., vol. 5, Academic Press, Inc., Boston, MA, 1988.  Google Scholar [15] D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for the one-dimensional $p$ -Laplacian, J. Math. Anal. Appl., 252 (2000), 631-648.  doi: 10.1006/jmaa.2000.7012.  Google Scholar [16] D. Ji, Z. Bai and W. Ge, The existence of countably many positive solutions for singular multipoint boundary value problems, Nonlinear Anal., 72 (2010), 955-964.  doi: 10.1016/j.na.2009.07.031.  Google Scholar [17] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar [18] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, B.V., Amsterdam, 2006.  Google Scholar [19] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9 (1983), 7-10.   Google Scholar [20] S. J. Linz and J. C. Sprott, Elementary chaotic flow, Phys. Lett. A, 259 (1999), 240-245.  doi: 10.1016/S0375-9601(99)00450-8.  Google Scholar [21] X. Liu and M. Jia, Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., 59 (2010), 2880-2886.  doi: 10.1016/j.camwa.2010.02.005.  Google Scholar [22] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994. doi: 10.1142/2352.  Google Scholar [23] D. O'Regan, Solvability of some fourth (and higher) order singular boundary value problems, J. Math. Anal. Appl., 161 (1991), 78-116.  doi: 10.1016/0022-247X(91)90363-5.  Google Scholar [24] I. Podlubny, Fractional Differential Equations. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar [25] T. Ren and X. Chen, Positive solutions of fractional differential equation with $p$ -Laplacian operator, Abstr. Appl. Anal., 2013, Art ID 789836, 7 pp. doi: 10.1155/2013/789836.  Google Scholar [26] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar [27] J. Schroder, Fourth order two-point boundary value problems; estimates by two-sided bounds, Nonlinear Anal., 8 (1984), 107-114.  doi: 10.1016/0362-546X(84)90063-4.  Google Scholar [28] K. Sheng, W. Zhang and Z. Bai, Positive solutions to fractional boundary-value problems with $p$ -Laplacian on time scales, Bound. Value Prob., 2018 (2018), Paper No. 70, 15 pp. doi: 10.1186/s13661-018-0990-2.  Google Scholar [29] J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with $p$ -Laplacian operator, Abstr. Appl. Anal., 2010, Art. ID 971824, 12 pp. doi: 10.1155/2010/971824.  Google Scholar [30] Z. Wei, A class of fourth order singular boundary value problems, Appl. Math. Comput., 153 (2004), 865-884.  doi: 10.1016/S0096-3003(03)00683-0.  Google Scholar [31] Y. Wei, Z. Bai and S. Sun, On positive solutions for some second-order three-point boundary value problems with convection term, J. Inequal. Appl., 2019 (2019), Paper No. 72, 11 pp. doi: 10.1186/s13660-019-2029-3.  Google Scholar [32] P. Yan, Nonresonance for one-dimensional$p$ -Laplacian with regular restoring, J. Math. Anal. Appl., 285 (2003), 141-154.  doi: 10.1016/S0022-247X(03)00383-4.  Google Scholar [33] Y. Zhang, Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance, J. Inequal. Appl., 2018 (2018), Paper No. 198, 17 pp. doi: 10.1186/s13660-018-1792-x.  Google Scholar [34] X. Zhang and L. Liu, Positive solutions of fourth-order four-point boundary value problems with$p$-Laplacian operator, J. Math. Anal. Appl., 336 (2007), 1414-–1423. doi: 10.1016/j.jmaa.2007.03.015.  Google Scholar [35] X. Zhang and L. Liu, A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with $p$ -Laplacian, Nonlinear Anal., 68 (2008), 3127-3137.  doi: 10.1016/j.na.2007.03.006.  Google Scholar
 [1] Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003 [2] Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 [3] Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 [4] Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 [5] Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398 [6] Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 [7] Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 [8] Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354 [9] Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 [10] Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 [11] Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 [12] Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 [13] Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 [14] Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340 [15] Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028 [16] Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436 [17] Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 [18] Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 [19] Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012 [20] Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $p$-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

2019 Impact Factor: 1.233

Article outline