# American Institute of Mathematical Sciences

## Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative

 1 Department of Mathematics, Faculty of Sciences University of Bougara, U.M.B.B., Algeria 2 Dynamic of Engines and Vibroacoustic Laboratory, U.M.B.B., Algeria 3 Department of Mathematical Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 4 Department of Mathematics, Çankaya University 06790, Ankara, Turkey 5 Department of Mathematics, Faculty of Sciences University of M'hamed Bougara, UMBB, Algeria 6 Laboratory of Dynamical Systems, Faculty of Mathematics, U.S.T.H.B., Algeria 7 Department of Mathematics and Physical Sciences, Prince Sultan University, P. O. Box 66833, Riyadh, 11586, KSA 8 Department of Medical Research, China Medical University, 40402, Taichung, Taiwan 9 Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

Received  November 2019 Revised  April 2020 Published  November 2020

This paper studies a class of fourth point singular boundary value problem of $p$-Laplacian operator in the setting of a specific kind of conformable derivatives. By using the upper and lower solutions method and fixed point theorems on cones., necessary and sufficient conditions for the existence of positive solutions are obtained. In addition, we investigate the dependence of the solution on the order of the conformable differential equation and on the initial conditions.

Citation: Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020442
##### References:
 [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar [2] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.  doi: 10.1016/S0022-247X(86)80006-3.  Google Scholar [3] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar [4] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505.  doi: 10.1016/j.jmaa.2005.02.052.  Google Scholar [5] A. Cabada, P. Habets and R. L. Pouso, Optimal existence conditions for $\varphi$ -Laplacian equations with upper and lower solutions in the reversed order, J. Differential Equations, 166 (2000), 385-401.  doi: 10.1006/jdeq.2000.3803.  Google Scholar [6] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403-411.  doi: 10.1016/j.jmaa.2011.11.065.  Google Scholar [7] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 1-13.   Google Scholar [8] G. Chai and S. Hu, Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Difference Equ., 2014 (2014), 17 pp. doi: 10.1186/1687-1847-2014-90.  Google Scholar [9] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton Fract., 28 (2006), 923-929.  doi: 10.1016/j.chaos.2005.08.199.  Google Scholar [10] W. Chen and Y. Liang, New methodologies in fractional and fractal derivatives modeling, Chaos Solitons Fractals, 102 (2017), 72-77.  doi: 10.1016/j.chaos.2017.03.066.  Google Scholar [11] Y. Chen and Y. Li, The existence of positive solutions for boundary value problem of nonlinear fractional differential equations, Abst. Appl. Anal. (2014), Art. ID 681513, 7 pp. doi: 10.1155/2014/681513.  Google Scholar [12] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, vol 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar [13] X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of $p$-Laplacian with fractional derivative, Bound. Value Probl., (2017), Paper No. 5, 15 pp. doi: 10.1186/s13661-016-0735-z.  Google Scholar [14] D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports Math. Sci. Eng., vol. 5, Academic Press, Inc., Boston, MA, 1988.  Google Scholar [15] D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for the one-dimensional $p$ -Laplacian, J. Math. Anal. Appl., 252 (2000), 631-648.  doi: 10.1006/jmaa.2000.7012.  Google Scholar [16] D. Ji, Z. Bai and W. Ge, The existence of countably many positive solutions for singular multipoint boundary value problems, Nonlinear Anal., 72 (2010), 955-964.  doi: 10.1016/j.na.2009.07.031.  Google Scholar [17] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar [18] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, B.V., Amsterdam, 2006.  Google Scholar [19] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9 (1983), 7-10.   Google Scholar [20] S. J. Linz and J. C. Sprott, Elementary chaotic flow, Phys. Lett. A, 259 (1999), 240-245.  doi: 10.1016/S0375-9601(99)00450-8.  Google Scholar [21] X. Liu and M. Jia, Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., 59 (2010), 2880-2886.  doi: 10.1016/j.camwa.2010.02.005.  Google Scholar [22] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994. doi: 10.1142/2352.  Google Scholar [23] D. O'Regan, Solvability of some fourth (and higher) order singular boundary value problems, J. Math. Anal. Appl., 161 (1991), 78-116.  doi: 10.1016/0022-247X(91)90363-5.  Google Scholar [24] I. Podlubny, Fractional Differential Equations. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar [25] T. Ren and X. Chen, Positive solutions of fractional differential equation with $p$ -Laplacian operator, Abstr. Appl. Anal., 2013, Art ID 789836, 7 pp. doi: 10.1155/2013/789836.  Google Scholar [26] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar [27] J. Schroder, Fourth order two-point boundary value problems; estimates by two-sided bounds, Nonlinear Anal., 8 (1984), 107-114.  doi: 10.1016/0362-546X(84)90063-4.  Google Scholar [28] K. Sheng, W. Zhang and Z. Bai, Positive solutions to fractional boundary-value problems with $p$ -Laplacian on time scales, Bound. Value Prob., 2018 (2018), Paper No. 70, 15 pp. doi: 10.1186/s13661-018-0990-2.  Google Scholar [29] J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with $p$ -Laplacian operator, Abstr. Appl. Anal., 2010, Art. ID 971824, 12 pp. doi: 10.1155/2010/971824.  Google Scholar [30] Z. Wei, A class of fourth order singular boundary value problems, Appl. Math. Comput., 153 (2004), 865-884.  doi: 10.1016/S0096-3003(03)00683-0.  Google Scholar [31] Y. Wei, Z. Bai and S. Sun, On positive solutions for some second-order three-point boundary value problems with convection term, J. Inequal. Appl., 2019 (2019), Paper No. 72, 11 pp. doi: 10.1186/s13660-019-2029-3.  Google Scholar [32] P. Yan, Nonresonance for one-dimensional$p$ -Laplacian with regular restoring, J. Math. Anal. Appl., 285 (2003), 141-154.  doi: 10.1016/S0022-247X(03)00383-4.  Google Scholar [33] Y. Zhang, Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance, J. Inequal. Appl., 2018 (2018), Paper No. 198, 17 pp. doi: 10.1186/s13660-018-1792-x.  Google Scholar [34] X. Zhang and L. Liu, Positive solutions of fourth-order four-point boundary value problems with$p$-Laplacian operator, J. Math. Anal. Appl., 336 (2007), 1414-–1423. doi: 10.1016/j.jmaa.2007.03.015.  Google Scholar [35] X. Zhang and L. Liu, A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with $p$ -Laplacian, Nonlinear Anal., 68 (2008), 3127-3137.  doi: 10.1016/j.na.2007.03.006.  Google Scholar

show all references

##### References:
 [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar [2] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415-426.  doi: 10.1016/S0022-247X(86)80006-3.  Google Scholar [3] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar [4] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495-505.  doi: 10.1016/j.jmaa.2005.02.052.  Google Scholar [5] A. Cabada, P. Habets and R. L. Pouso, Optimal existence conditions for $\varphi$ -Laplacian equations with upper and lower solutions in the reversed order, J. Differential Equations, 166 (2000), 385-401.  doi: 10.1006/jdeq.2000.3803.  Google Scholar [6] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403-411.  doi: 10.1016/j.jmaa.2011.11.065.  Google Scholar [7] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 1-13.   Google Scholar [8] G. Chai and S. Hu, Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Difference Equ., 2014 (2014), 17 pp. doi: 10.1186/1687-1847-2014-90.  Google Scholar [9] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton Fract., 28 (2006), 923-929.  doi: 10.1016/j.chaos.2005.08.199.  Google Scholar [10] W. Chen and Y. Liang, New methodologies in fractional and fractal derivatives modeling, Chaos Solitons Fractals, 102 (2017), 72-77.  doi: 10.1016/j.chaos.2017.03.066.  Google Scholar [11] Y. Chen and Y. Li, The existence of positive solutions for boundary value problem of nonlinear fractional differential equations, Abst. Appl. Anal. (2014), Art. ID 681513, 7 pp. doi: 10.1155/2014/681513.  Google Scholar [12] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, vol 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar [13] X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of $p$-Laplacian with fractional derivative, Bound. Value Probl., (2017), Paper No. 5, 15 pp. doi: 10.1186/s13661-016-0735-z.  Google Scholar [14] D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports Math. Sci. Eng., vol. 5, Academic Press, Inc., Boston, MA, 1988.  Google Scholar [15] D. Jiang and W. Gao, Upper and lower solution method and a singular boundary value problem for the one-dimensional $p$ -Laplacian, J. Math. Anal. Appl., 252 (2000), 631-648.  doi: 10.1006/jmaa.2000.7012.  Google Scholar [16] D. Ji, Z. Bai and W. Ge, The existence of countably many positive solutions for singular multipoint boundary value problems, Nonlinear Anal., 72 (2010), 955-964.  doi: 10.1016/j.na.2009.07.031.  Google Scholar [17] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar [18] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, B.V., Amsterdam, 2006.  Google Scholar [19] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9 (1983), 7-10.   Google Scholar [20] S. J. Linz and J. C. Sprott, Elementary chaotic flow, Phys. Lett. A, 259 (1999), 240-245.  doi: 10.1016/S0375-9601(99)00450-8.  Google Scholar [21] X. Liu and M. Jia, Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., 59 (2010), 2880-2886.  doi: 10.1016/j.camwa.2010.02.005.  Google Scholar [22] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994. doi: 10.1142/2352.  Google Scholar [23] D. O'Regan, Solvability of some fourth (and higher) order singular boundary value problems, J. Math. Anal. Appl., 161 (1991), 78-116.  doi: 10.1016/0022-247X(91)90363-5.  Google Scholar [24] I. Podlubny, Fractional Differential Equations. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar [25] T. Ren and X. Chen, Positive solutions of fractional differential equation with $p$ -Laplacian operator, Abstr. Appl. Anal., 2013, Art ID 789836, 7 pp. doi: 10.1155/2013/789836.  Google Scholar [26] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar [27] J. Schroder, Fourth order two-point boundary value problems; estimates by two-sided bounds, Nonlinear Anal., 8 (1984), 107-114.  doi: 10.1016/0362-546X(84)90063-4.  Google Scholar [28] K. Sheng, W. Zhang and Z. Bai, Positive solutions to fractional boundary-value problems with $p$ -Laplacian on time scales, Bound. Value Prob., 2018 (2018), Paper No. 70, 15 pp. doi: 10.1186/s13661-018-0990-2.  Google Scholar [29] J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with $p$ -Laplacian operator, Abstr. Appl. Anal., 2010, Art. ID 971824, 12 pp. doi: 10.1155/2010/971824.  Google Scholar [30] Z. Wei, A class of fourth order singular boundary value problems, Appl. Math. Comput., 153 (2004), 865-884.  doi: 10.1016/S0096-3003(03)00683-0.  Google Scholar [31] Y. Wei, Z. Bai and S. Sun, On positive solutions for some second-order three-point boundary value problems with convection term, J. Inequal. Appl., 2019 (2019), Paper No. 72, 11 pp. doi: 10.1186/s13660-019-2029-3.  Google Scholar [32] P. Yan, Nonresonance for one-dimensional$p$ -Laplacian with regular restoring, J. Math. Anal. Appl., 285 (2003), 141-154.  doi: 10.1016/S0022-247X(03)00383-4.  Google Scholar [33] Y. Zhang, Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance, J. Inequal. Appl., 2018 (2018), Paper No. 198, 17 pp. doi: 10.1186/s13660-018-1792-x.  Google Scholar [34] X. Zhang and L. Liu, Positive solutions of fourth-order four-point boundary value problems with$p$-Laplacian operator, J. Math. Anal. Appl., 336 (2007), 1414-–1423. doi: 10.1016/j.jmaa.2007.03.015.  Google Scholar [35] X. Zhang and L. Liu, A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with $p$ -Laplacian, Nonlinear Anal., 68 (2008), 3127-3137.  doi: 10.1016/j.na.2007.03.006.  Google Scholar
 [1] Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 [2] Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416 [3] Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 [4] Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313 [5] Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741 [6] John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337 [7] John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269 [8] Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 [9] Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045 [10] John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276 [11] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [12] Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485 [13] John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283 [14] John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89 [15] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [16] Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 [17] John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83 [18] Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263 [19] Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 [20] J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905

2019 Impact Factor: 1.233

Article outline