October  2021, 14(10): 3337-3349. doi: 10.3934/dcdss.2020443

Oscillation criteria for kernel function dependent fractional dynamic equations

1. 

Department of Mathematics and General Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia

2. 

Department of Medical Research, China Medical University, Taichung 40402, Taiwan

3. 

Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

* Corresponding author: tabdeljawad@psu.edu.sa

Received  November 2019 Revised  March 2020 Published  October 2021 Early access  November 2020

In this work, we examine the oscillation of a class fractional differential equations in the frame of generalized nonlocal fractional derivatives with function dependent kernel type. We present sufficient conditions to prove the oscillation criteria in both of the Riemann-Liouville (RL) and Caputo types. Taking particular cases of the nondecreasing function appearing in the kernel of the treated fractional derivative recovers the oscillation of several proven results investigated previously in literature. Two examples, where the kernel function is quadratic and cubic polynomial, have been given to support the validity of the proven results for the RL and Caputo cases, respectively.

Citation: Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443
References:
[1]

B. Abdalla, On the oscillation of q-fractional difference equations, Advances of Difference Equations, 2017 (2017), Paper No. 254, 11 pp. doi: 10.1186/s13662-017-1316-x.  Google Scholar

[2]

B. Abdalla, Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives, Advances of Difference Equations, 2018 (2018), Paper No. 107, 15 pp. doi: 10.1186/s13662-018-1554-6.  Google Scholar

[3]

B. Abdalla and T. Abdeljawad, On the oscillation of Hadamard fractional differential equations, Advances of Difference Equations, 2018 (2018), Paper No. 409, 13 pp. doi: 10.1186/s13662-018-1870-x.  Google Scholar

[4]

B. Abdalla and T. Abdeljawad, On the oscillation of Caputo fractional differential equations with Mittag-Leffler nonsingular kernel, Chaos, Solitons Fractals, 127 (2019), 173-177.  doi: 10.1016/j.chaos.2019.07.001.  Google Scholar

[5]

Y. AdjabiF. JaradD. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, Journal of Computational Analysis and Applications, 21 (2016), 661-681.   Google Scholar

[6]

J. Alzabut and T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, Journal of Fractional Calculus and Applications, 5 (2014), 177-187.   Google Scholar

[7]

A. Aphithana, S. K. Ntouyas and J. Tariboon, Forced oscillation of fractional differential equations via conformable derivatives with damping term, Boundary Value Problems, 2019 (2019), Paper No. 47, 16 pp. doi: 10.1186/s13661-019-1162-8.  Google Scholar

[8]

A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Science, 20 (2016), 757-763.   Google Scholar

[9]

Y. Bolat, On the oscillation of fractional order delay differential equations with constant coefficients, Commun Nonlinear Sci Numer. Simul., 19 (2014), 3988-3993.  doi: 10.1016/j.cnsns.2014.01.005.  Google Scholar

[10]

D. X. Chen, Oscillation criteria of fractional differential equations, Advances in Difference Equations, 2012 (2012), Art. No. 33, 10 pp. doi: 10.1186/1687-1847-2012-33.  Google Scholar

[11]

D. Chen, P. Qu and Y. Lan, Forced oscillation of certain fractional differential equations, Advances in Difference Equations, 2013 (2013), Art No. 125, 10 pp. doi: 10.1186/1687-1847-2013-125.  Google Scholar

[12]

S. R. GraceR. P. AgarwalP. J. Y. Wong and A. Zafer, On the oscillation of fractional differential equations, Fractional Calculus Applied Analysis, 15 (2012), 222-231.  doi: 10.2478/s13540-012-0016-1.  Google Scholar

[13]

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 1988.  Google Scholar

[14]

F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete and Continuous Dynamical Systems - S, 13 (2020), 709-722.  doi: 10.3934/dcdss.2020039.  Google Scholar

[15]

F. Jarad, T. Abdeljawad and D. Baleanu, Captuto-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012 (2012), Art No. 142, 8 pp. doi: 10.1186/1687-1847-2012-142.  Google Scholar

[16]

A. A. Kilbas, M. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[17]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[18]

J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas–Milovic model with Mittag–Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), Paper No. 303, 23 pp. doi: 10.1051/mmnp/2018068.  Google Scholar

[19]

Y. ZhouB. AhmmadF. Chen and A. Alsaedi, Oscialltion of fractional partial differential equations, Bull. Malays. Math. Soc., 42 (2017), 449-465.  doi: 10.1007/s40840-017-0495-7.  Google Scholar

[20]

P. Zhu and Q. Xiang, Oscillation criteria for a class of fractioal delay differential equations, Advances in Difference Equations, 2018 (2018), Paper No. 403, 11 pp. doi: 10.1186/s13662-018-1813-6.  Google Scholar

show all references

References:
[1]

B. Abdalla, On the oscillation of q-fractional difference equations, Advances of Difference Equations, 2017 (2017), Paper No. 254, 11 pp. doi: 10.1186/s13662-017-1316-x.  Google Scholar

[2]

B. Abdalla, Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives, Advances of Difference Equations, 2018 (2018), Paper No. 107, 15 pp. doi: 10.1186/s13662-018-1554-6.  Google Scholar

[3]

B. Abdalla and T. Abdeljawad, On the oscillation of Hadamard fractional differential equations, Advances of Difference Equations, 2018 (2018), Paper No. 409, 13 pp. doi: 10.1186/s13662-018-1870-x.  Google Scholar

[4]

B. Abdalla and T. Abdeljawad, On the oscillation of Caputo fractional differential equations with Mittag-Leffler nonsingular kernel, Chaos, Solitons Fractals, 127 (2019), 173-177.  doi: 10.1016/j.chaos.2019.07.001.  Google Scholar

[5]

Y. AdjabiF. JaradD. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, Journal of Computational Analysis and Applications, 21 (2016), 661-681.   Google Scholar

[6]

J. Alzabut and T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, Journal of Fractional Calculus and Applications, 5 (2014), 177-187.   Google Scholar

[7]

A. Aphithana, S. K. Ntouyas and J. Tariboon, Forced oscillation of fractional differential equations via conformable derivatives with damping term, Boundary Value Problems, 2019 (2019), Paper No. 47, 16 pp. doi: 10.1186/s13661-019-1162-8.  Google Scholar

[8]

A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Science, 20 (2016), 757-763.   Google Scholar

[9]

Y. Bolat, On the oscillation of fractional order delay differential equations with constant coefficients, Commun Nonlinear Sci Numer. Simul., 19 (2014), 3988-3993.  doi: 10.1016/j.cnsns.2014.01.005.  Google Scholar

[10]

D. X. Chen, Oscillation criteria of fractional differential equations, Advances in Difference Equations, 2012 (2012), Art. No. 33, 10 pp. doi: 10.1186/1687-1847-2012-33.  Google Scholar

[11]

D. Chen, P. Qu and Y. Lan, Forced oscillation of certain fractional differential equations, Advances in Difference Equations, 2013 (2013), Art No. 125, 10 pp. doi: 10.1186/1687-1847-2013-125.  Google Scholar

[12]

S. R. GraceR. P. AgarwalP. J. Y. Wong and A. Zafer, On the oscillation of fractional differential equations, Fractional Calculus Applied Analysis, 15 (2012), 222-231.  doi: 10.2478/s13540-012-0016-1.  Google Scholar

[13]

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 1988.  Google Scholar

[14]

F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete and Continuous Dynamical Systems - S, 13 (2020), 709-722.  doi: 10.3934/dcdss.2020039.  Google Scholar

[15]

F. Jarad, T. Abdeljawad and D. Baleanu, Captuto-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012 (2012), Art No. 142, 8 pp. doi: 10.1186/1687-1847-2012-142.  Google Scholar

[16]

A. A. Kilbas, M. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[17]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[18]

J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas–Milovic model with Mittag–Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), Paper No. 303, 23 pp. doi: 10.1051/mmnp/2018068.  Google Scholar

[19]

Y. ZhouB. AhmmadF. Chen and A. Alsaedi, Oscialltion of fractional partial differential equations, Bull. Malays. Math. Soc., 42 (2017), 449-465.  doi: 10.1007/s40840-017-0495-7.  Google Scholar

[20]

P. Zhu and Q. Xiang, Oscillation criteria for a class of fractioal delay differential equations, Advances in Difference Equations, 2018 (2018), Paper No. 403, 11 pp. doi: 10.1186/s13662-018-1813-6.  Google Scholar

[1]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[2]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020

[3]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3803-3819. doi: 10.3934/dcdss.2021019

[4]

Magnus Aspenberg, Viviane Baladi, Juho Leppänen, Tomas Persson. On the fractional susceptibility function of piecewise expanding maps. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021133

[5]

Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021164

[6]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[7]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[8]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[9]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[10]

Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336

[11]

Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2357-2371. doi: 10.3934/dcdss.2020172

[12]

Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321

[13]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[14]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[15]

Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055

[16]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[17]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[18]

Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3401-3417. doi: 10.3934/dcdss.2020423

[19]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

[20]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (187)
  • HTML views (362)
  • Cited by (0)

Other articles
by authors

[Back to Top]