In this paper, we analyze the concept of observability in the case of conformable time-invariant linear control systems. Also, we study the Gramian observability matrix of the conformable linear system, its rank criteria, null space, and some other conditions. We also discuss some properties of conformable Laplace transform.
Citation: |
[1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
doi: 10.1016/j.cam.2014.10.016.![]() ![]() ![]() |
[2] |
D. Baleanu, Z. B Güvenc and J. A. Tenneiro Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.
doi: 10.1007/978-90-481-3293-5.![]() ![]() ![]() |
[3] |
I. Benabbas and D. E. Teniou, Observability of wave equation with Ventcel dynamic condition, Evol. Equ. Control Theory, 7 (2018), 545-570.
doi: 10.3934/eect.2018026.![]() ![]() ![]() |
[4] |
R. Caponetto, G. Dongola, L. Fortuna and I. Petras, Fractional Order Systems: Modeling and Control Applications, World Scientific Series, vol. 72, 2010,200 pp.
doi: 10.1142/7709.![]() ![]() |
[5] |
A. Escalante and Al dair-Pantoja, The Hamilton-Jacobi analysis and canonical covariant description for three-dimensional Palatini theory plus a Chern-Simons term, Eur. Phys. J. Plus, 134 (2019), 1-10.
![]() |
[6] |
R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E, 51 (1995), 1-5.
doi: 10.1103/PhysRevE.51.R848.![]() ![]() |
[7] |
R. Khalil, M. Al Haroni, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
doi: 10.1016/j.cam.2014.01.002.![]() ![]() ![]() |
[8] |
R. E. Kálmán, Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 2 (1960), 102-119.
![]() |
[9] |
R. E. Kálmán, Mathematical description of linear dynamical systems, J. SIAM Control Ser. A, 1 (1963), 152-192.
![]() ![]() |
[10] |
N. A. Khan, O. A. Razzaq and M. Ayyaz, Some properties and applications of Conformable Fractional Laplace Transform (CFLT), J. Fract. Calc. Appl., 9 (2018), 72-81.
![]() ![]() |
[11] |
D. Kumar, J. Singh, K. Tanwar and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, Int. J. Heat Mass Transf., 138 (2019), 1222-1227.
doi: 10.1016/j.ijheatmasstransfer.2019.04.094.![]() ![]() |
[12] |
V. Mohammadnezhad, M. Eslami and H. Rezazadeh, Stability analysis of linear conformable fractional differential equations system with time delays, Bol. Soc. Parana. Mat., 38 (2020), 159-171.
doi: 10.5269/bspm.v38i6.37010.![]() ![]() ![]() |
[13] |
K. S. Nisar, G. Rehman and K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), Paper No. 245, 9 pp.
doi: 10.1186/s13660-019-2197-1.![]() ![]() ![]() |
[14] |
H. Rezazadeh, H. Aminikhah and A. H. Refahi Sheikhani, Stability analysis of conformable fractional systems, Iranian J. Numer. Anal. Opti., 7 (2017), 13-32.
![]() |
[15] |
W. J. Rugh, Linear System Theory 2E, Prentice Hall, Upper Saddle River, NJ, 07458, 1996.
![]() |
[16] |
C. Ruiyang, G. Fudong, C. Yangquan and K. Chunhai, Regional observability for Hadamard-Caputo time fractional distributed parameter systems, Appl. Math. Comput., 360 (2019), 190-202.
doi: 10.1016/j.amc.2019.04.081.![]() ![]() ![]() |
[17] |
F. S. Silva, D. M. Moreira and M. A. Moret, Conformable Laplace Transform of fractional differential equations, Axioms, 55 (2018), 1-11.
doi: 10.3390/axioms7030055.![]() ![]() |
[18] |
E. Unal, A. Gokdogan and E. Celik, Solutions around a regular a singular point of a sequential conformable fractional differential equation, Kuwait Journal of Science, 44 (2017), 9-16.
![]() ![]() |
[19] |
T. A. Yıldız, A. Jajarmi, B. Yıldız and D. Baleanu, New aspects of time fractional optimal control problems within operators with nonsingular kernel, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 407-428.
doi: 10.3934/dcdss.2020023.![]() ![]() ![]() |
[20] |
D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, (2017), 903–917.
doi: 10.1007/s10092-017-0213-8.![]() ![]() ![]() |