• Previous Article
    Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances
  • DCDS-S Home
  • This Issue
  • Next Article
    Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions
doi: 10.3934/dcdss.2020448

Local smooth solutions of the nonlinear Klein-gordon equation

1. 

Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, Ciudad de México, 01000, México

* Corresponding author: Ivan Naumkin

Received  August 2019 Revised  May 2020 Published  November 2020

Fund Project: Ivan Naumkin is a Fellow of Sistema Nacional de Investigadores. The research was partially supported by project PAPIIT IA101820

Given any $ \mu _1, \mu _2\in {\mathbb C} $ and $ \alpha >0 $, we prove the local existence of arbitrarily smooth solutions of the nonlinear Klein-Gordon equation $ \partial _{ tt } u - \Delta u + \mu _1 u = \mu _2 |u|^\alpha u $ on $ {\mathbb R}^N $, $ N\ge 1 $, that do not vanish, i.e. $ |u (t, x) | >0 $ for all $ x \in {\mathbb R}^N $ and all sufficiently small $ t $. We write the equation in the form of a first-order system associated with a pseudo-differential operator, then use a method adapted from [Commun. Contemp. Math. 19 (2017), no. 2, 1650038]. We also apply a similar (but simpler than in the case of the Klein-Gordon equation) argument to prove an analogous result for a class of nonlinear Dirac equations.

Citation: Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020448
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Commun. Math. Phys., 335 (2015), 43-82.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[3]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{\frac 12}(\Bbb R^2)$, Commun. Math. Phys., 343 (2016), 515-562.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[4]

P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math. Z., 186 (1984), 383-391.  doi: 10.1007/BF01174891.  Google Scholar

[5]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344.  doi: 10.1016/0022-0396(85)90083-X.  Google Scholar

[6]

T. Candy, Global existence for an $L^{2}$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.   Google Scholar

[7]

T. Candy and H. Lindblad, Long range scattering for the cubic Dirac equation on $\Bbb R^{1+1}$, Differential Integral Equations, 31 (2018), 507-518.   Google Scholar

[8]

T. CazenaveF. Dickstein and F. B. Weissler, Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations, Nagoya Math. J., 226 (2017), 44-70.  doi: 10.1017/nmj.2016.35.  Google Scholar

[9]

T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.  Google Scholar

[10]

T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.  Google Scholar

[11]

J.-M. Delort, Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), 1–61. doi: 10.1016/S0012-9593(00)01059-4.  Google Scholar

[12]

J.-M. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[13]

J.-P. Dias and M. Figueira, Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986), 309-316.   Google Scholar

[14]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s({\bf{R}}^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.  doi: 10.1137/S0036141095283017.  Google Scholar

[15]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math Z., 189 (1985), 487-505.  doi: 10.1007/BF01168155.  Google Scholar

[16]

J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 399-442.   Google Scholar

[17]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35.  doi: 10.1016/S0294-1449(16)30329-8.  Google Scholar

[18]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations, Comm. Math. Phys., 123 (1989), 535-573.  doi: 10.1007/BF01218585.  Google Scholar

[19]

N. Hayashi and P. I. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys., 59 (2008), 1002-1028.  doi: 10.1007/s00033-007-7008-8.  Google Scholar

[20]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions, J. Differential Equations, 244 (2008), 188-199.  doi: 10.1016/j.jde.2007.10.002.  Google Scholar

[21]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations, Commun. Contemp. Math., 11 (2009), 771-781.  doi: 10.1142/S0219199709003582.  Google Scholar

[22]

H. Kalf and O. Yamada, Essential self-adjointness of $n$-dimensional Dirac operators with a variable mass term, J. Math. Phys., 42 (2001), 2667-2676.  doi: 10.1063/1.1367331.  Google Scholar

[23]

S. Katayama, A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension, J. Math. Kyoto Univ., 39 (1999), 203-213.  doi: 10.1215/kjm/1250517908.  Google Scholar

[24]

S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38 (1985), 631-641.  doi: 10.1002/cpa.3160380512.  Google Scholar

[25]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., 21 (2019), 1850056, 21 pp. doi: 10.1142/S0219199718500566.  Google Scholar

[26]

F. LinaresG. Ponce and G. N. Santos, On a class of solutions to the generalized derivative Schrödinger equations, Acta. Math. Sin. (Engl. Ser.), 35 (2019), 1057-1073.  doi: 10.1007/s10114-019-7540-4.  Google Scholar

[27]

F. LinaresG. Ponce and G. N. Santos, On a class to the generalized derivative Schrödinger equations II, J. Differential Equations, 267 (2019), 97-118.  doi: 10.1016/j.jde.2019.01.004.  Google Scholar

[28]

H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73 (2005), 249-258.  doi: 10.1007/s11005-005-0021-y.  Google Scholar

[29]

S. Machihara, One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005), 277-290.  doi: 10.3934/dcds.2005.13.277.  Google Scholar

[30]

S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.  doi: 10.1142/S0219199707002484.  Google Scholar

[31]

S. MachiharaM. NakamuraK. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[33]

S. MachiharaK. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.  doi: 10.1215/0023608X-2009-018.  Google Scholar

[34]

S. Masaki and J. Segata, Modified scattering for the quadratic nonlinear Klein-Gordon equation in two dimensions, Trans. Amer. Math. Soc., 370 (2018), 8155-8170.  doi: 10.1090/tran/7262.  Google Scholar

[35]

C. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31.  doi: 10.1002/cpa.3160250103.  Google Scholar

[36]

K. Moriyama, Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, 10 (1997), 499-520.   Google Scholar

[37]

K. MoriyamaS. Tonegawa and Y. Tsutsumi, Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40 (1997), 313-333.   Google Scholar

[38]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions $1$ and $2$, J. Funct. Anal., 169 (1999), 201-225.  doi: 10.1006/jfan.1999.3503.  Google Scholar

[39]

I. P. Naumkin, Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016), 1633-1664.  doi: 10.1016/j.jmaa.2015.09.049.  Google Scholar

[40]

I. P. Naumkin, Klein-Gordon equation with critical nonlinearity and inhomogeneous Dirichlet boundary conditions, Differential Integral Equations, 29 (2016), 55-92.   Google Scholar

[41]

I. P. Naumkin, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.  doi: 10.1016/j.jde.2016.07.003.  Google Scholar

[42]

I. Naumkin, Neumann problem for the nonlinear Klein-Gordon equation, Nonlinear Anal., 149 (2017), 81-110.  doi: 10.1016/j.na.2016.10.014.  Google Scholar

[43]

T. OzawaK. Tsutaya and Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222 (1996), 341-362.  doi: 10.1007/BF02621870.  Google Scholar

[44]

H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270.  doi: 10.1007/BF01181697.  Google Scholar

[45]

H. Pecher, Low-energy scattering for nonlinear Klein-Gordon equations, J. Funct. Anal., 63 (1985), 101-122.  doi: 10.1016/0022-1236(85)90100-4.  Google Scholar

[46]

H. Pecher, Local solutions of semilinear wave equations in $H^{s+1}$, Math. Methods Appl. Sci., 19 (1996), 145-170.  doi: 10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M.  Google Scholar

[47]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 673-685.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[48]

H. Sasaki, Small data scattering for the one-dimensional nonlinear Dirac equation with power nonlinearity, Comm. Partial Differential Equations, 40 (2015), 1959-2004.  doi: 10.1080/03605302.2015.1081608.  Google Scholar

[49]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010), 265-278.   Google Scholar

[50]

J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38 (1985), 685-696.  doi: 10.1002/cpa.3160380516.  Google Scholar

[51]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.  doi: 10.1103/PhysRevD.1.2766.  Google Scholar

[52]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[53]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[54]

W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.  Google Scholar

[55]

B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.  Google Scholar

[56]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.  doi: 10.1016/0003-4916(58)90015-0.  Google Scholar

[57]

N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22 (1998), 193-211.  doi: 10.21099/tkbjm/1496163480.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Commun. Math. Phys., 335 (2015), 43-82.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[3]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{\frac 12}(\Bbb R^2)$, Commun. Math. Phys., 343 (2016), 515-562.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[4]

P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math. Z., 186 (1984), 383-391.  doi: 10.1007/BF01174891.  Google Scholar

[5]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344.  doi: 10.1016/0022-0396(85)90083-X.  Google Scholar

[6]

T. Candy, Global existence for an $L^{2}$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.   Google Scholar

[7]

T. Candy and H. Lindblad, Long range scattering for the cubic Dirac equation on $\Bbb R^{1+1}$, Differential Integral Equations, 31 (2018), 507-518.   Google Scholar

[8]

T. CazenaveF. Dickstein and F. B. Weissler, Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations, Nagoya Math. J., 226 (2017), 44-70.  doi: 10.1017/nmj.2016.35.  Google Scholar

[9]

T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.  Google Scholar

[10]

T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.  Google Scholar

[11]

J.-M. Delort, Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), 1–61. doi: 10.1016/S0012-9593(00)01059-4.  Google Scholar

[12]

J.-M. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[13]

J.-P. Dias and M. Figueira, Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986), 309-316.   Google Scholar

[14]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s({\bf{R}}^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.  doi: 10.1137/S0036141095283017.  Google Scholar

[15]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math Z., 189 (1985), 487-505.  doi: 10.1007/BF01168155.  Google Scholar

[16]

J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 399-442.   Google Scholar

[17]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35.  doi: 10.1016/S0294-1449(16)30329-8.  Google Scholar

[18]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations, Comm. Math. Phys., 123 (1989), 535-573.  doi: 10.1007/BF01218585.  Google Scholar

[19]

N. Hayashi and P. I. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys., 59 (2008), 1002-1028.  doi: 10.1007/s00033-007-7008-8.  Google Scholar

[20]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions, J. Differential Equations, 244 (2008), 188-199.  doi: 10.1016/j.jde.2007.10.002.  Google Scholar

[21]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations, Commun. Contemp. Math., 11 (2009), 771-781.  doi: 10.1142/S0219199709003582.  Google Scholar

[22]

H. Kalf and O. Yamada, Essential self-adjointness of $n$-dimensional Dirac operators with a variable mass term, J. Math. Phys., 42 (2001), 2667-2676.  doi: 10.1063/1.1367331.  Google Scholar

[23]

S. Katayama, A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension, J. Math. Kyoto Univ., 39 (1999), 203-213.  doi: 10.1215/kjm/1250517908.  Google Scholar

[24]

S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38 (1985), 631-641.  doi: 10.1002/cpa.3160380512.  Google Scholar

[25]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., 21 (2019), 1850056, 21 pp. doi: 10.1142/S0219199718500566.  Google Scholar

[26]

F. LinaresG. Ponce and G. N. Santos, On a class of solutions to the generalized derivative Schrödinger equations, Acta. Math. Sin. (Engl. Ser.), 35 (2019), 1057-1073.  doi: 10.1007/s10114-019-7540-4.  Google Scholar

[27]

F. LinaresG. Ponce and G. N. Santos, On a class to the generalized derivative Schrödinger equations II, J. Differential Equations, 267 (2019), 97-118.  doi: 10.1016/j.jde.2019.01.004.  Google Scholar

[28]

H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73 (2005), 249-258.  doi: 10.1007/s11005-005-0021-y.  Google Scholar

[29]

S. Machihara, One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005), 277-290.  doi: 10.3934/dcds.2005.13.277.  Google Scholar

[30]

S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.  doi: 10.1142/S0219199707002484.  Google Scholar

[31]

S. MachiharaM. NakamuraK. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[33]

S. MachiharaK. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.  doi: 10.1215/0023608X-2009-018.  Google Scholar

[34]

S. Masaki and J. Segata, Modified scattering for the quadratic nonlinear Klein-Gordon equation in two dimensions, Trans. Amer. Math. Soc., 370 (2018), 8155-8170.  doi: 10.1090/tran/7262.  Google Scholar

[35]

C. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31.  doi: 10.1002/cpa.3160250103.  Google Scholar

[36]

K. Moriyama, Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, 10 (1997), 499-520.   Google Scholar

[37]

K. MoriyamaS. Tonegawa and Y. Tsutsumi, Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40 (1997), 313-333.   Google Scholar

[38]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions $1$ and $2$, J. Funct. Anal., 169 (1999), 201-225.  doi: 10.1006/jfan.1999.3503.  Google Scholar

[39]

I. P. Naumkin, Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016), 1633-1664.  doi: 10.1016/j.jmaa.2015.09.049.  Google Scholar

[40]

I. P. Naumkin, Klein-Gordon equation with critical nonlinearity and inhomogeneous Dirichlet boundary conditions, Differential Integral Equations, 29 (2016), 55-92.   Google Scholar

[41]

I. P. Naumkin, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.  doi: 10.1016/j.jde.2016.07.003.  Google Scholar

[42]

I. Naumkin, Neumann problem for the nonlinear Klein-Gordon equation, Nonlinear Anal., 149 (2017), 81-110.  doi: 10.1016/j.na.2016.10.014.  Google Scholar

[43]

T. OzawaK. Tsutaya and Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222 (1996), 341-362.  doi: 10.1007/BF02621870.  Google Scholar

[44]

H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270.  doi: 10.1007/BF01181697.  Google Scholar

[45]

H. Pecher, Low-energy scattering for nonlinear Klein-Gordon equations, J. Funct. Anal., 63 (1985), 101-122.  doi: 10.1016/0022-1236(85)90100-4.  Google Scholar

[46]

H. Pecher, Local solutions of semilinear wave equations in $H^{s+1}$, Math. Methods Appl. Sci., 19 (1996), 145-170.  doi: 10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M.  Google Scholar

[47]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 673-685.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[48]

H. Sasaki, Small data scattering for the one-dimensional nonlinear Dirac equation with power nonlinearity, Comm. Partial Differential Equations, 40 (2015), 1959-2004.  doi: 10.1080/03605302.2015.1081608.  Google Scholar

[49]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010), 265-278.   Google Scholar

[50]

J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38 (1985), 685-696.  doi: 10.1002/cpa.3160380516.  Google Scholar

[51]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.  doi: 10.1103/PhysRevD.1.2766.  Google Scholar

[52]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[53]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[54]

W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.  Google Scholar

[55]

B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.  Google Scholar

[56]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.  doi: 10.1016/0003-4916(58)90015-0.  Google Scholar

[57]

N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22 (1998), 193-211.  doi: 10.21099/tkbjm/1496163480.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[17]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (21)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]