May  2021, 14(5): 1649-1672. doi: 10.3934/dcdss.2020448

Local smooth solutions of the nonlinear Klein-gordon equation

1. 

Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, Ciudad de México, 01000, México

* Corresponding author: Ivan Naumkin

Received  August 2019 Revised  May 2020 Published  November 2020

Fund Project: Ivan Naumkin is a Fellow of Sistema Nacional de Investigadores. The research was partially supported by project PAPIIT IA101820

Given any $ \mu _1, \mu _2\in {\mathbb C} $ and $ \alpha >0 $, we prove the local existence of arbitrarily smooth solutions of the nonlinear Klein-Gordon equation $ \partial _{ tt } u - \Delta u + \mu _1 u = \mu _2 |u|^\alpha u $ on $ {\mathbb R}^N $, $ N\ge 1 $, that do not vanish, i.e. $ |u (t, x) | >0 $ for all $ x \in {\mathbb R}^N $ and all sufficiently small $ t $. We write the equation in the form of a first-order system associated with a pseudo-differential operator, then use a method adapted from [Commun. Contemp. Math. 19 (2017), no. 2, 1650038]. We also apply a similar (but simpler than in the case of the Klein-Gordon equation) argument to prove an analogous result for a class of nonlinear Dirac equations.

Citation: Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Commun. Math. Phys., 335 (2015), 43-82.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[3]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{\frac 12}(\Bbb R^2)$, Commun. Math. Phys., 343 (2016), 515-562.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[4]

P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math. Z., 186 (1984), 383-391.  doi: 10.1007/BF01174891.  Google Scholar

[5]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344.  doi: 10.1016/0022-0396(85)90083-X.  Google Scholar

[6]

T. Candy, Global existence for an $L^{2}$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.   Google Scholar

[7]

T. Candy and H. Lindblad, Long range scattering for the cubic Dirac equation on $\Bbb R^{1+1}$, Differential Integral Equations, 31 (2018), 507-518.   Google Scholar

[8]

T. CazenaveF. Dickstein and F. B. Weissler, Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations, Nagoya Math. J., 226 (2017), 44-70.  doi: 10.1017/nmj.2016.35.  Google Scholar

[9]

T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.  Google Scholar

[10]

T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.  Google Scholar

[11]

J.-M. Delort, Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), 1–61. doi: 10.1016/S0012-9593(00)01059-4.  Google Scholar

[12]

J.-M. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[13]

J.-P. Dias and M. Figueira, Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986), 309-316.   Google Scholar

[14]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s({\bf{R}}^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.  doi: 10.1137/S0036141095283017.  Google Scholar

[15]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math Z., 189 (1985), 487-505.  doi: 10.1007/BF01168155.  Google Scholar

[16]

J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 399-442.   Google Scholar

[17]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35.  doi: 10.1016/S0294-1449(16)30329-8.  Google Scholar

[18]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations, Comm. Math. Phys., 123 (1989), 535-573.  doi: 10.1007/BF01218585.  Google Scholar

[19]

N. Hayashi and P. I. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys., 59 (2008), 1002-1028.  doi: 10.1007/s00033-007-7008-8.  Google Scholar

[20]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions, J. Differential Equations, 244 (2008), 188-199.  doi: 10.1016/j.jde.2007.10.002.  Google Scholar

[21]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations, Commun. Contemp. Math., 11 (2009), 771-781.  doi: 10.1142/S0219199709003582.  Google Scholar

[22]

H. Kalf and O. Yamada, Essential self-adjointness of $n$-dimensional Dirac operators with a variable mass term, J. Math. Phys., 42 (2001), 2667-2676.  doi: 10.1063/1.1367331.  Google Scholar

[23]

S. Katayama, A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension, J. Math. Kyoto Univ., 39 (1999), 203-213.  doi: 10.1215/kjm/1250517908.  Google Scholar

[24]

S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38 (1985), 631-641.  doi: 10.1002/cpa.3160380512.  Google Scholar

[25]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., 21 (2019), 1850056, 21 pp. doi: 10.1142/S0219199718500566.  Google Scholar

[26]

F. LinaresG. Ponce and G. N. Santos, On a class of solutions to the generalized derivative Schrödinger equations, Acta. Math. Sin. (Engl. Ser.), 35 (2019), 1057-1073.  doi: 10.1007/s10114-019-7540-4.  Google Scholar

[27]

F. LinaresG. Ponce and G. N. Santos, On a class to the generalized derivative Schrödinger equations II, J. Differential Equations, 267 (2019), 97-118.  doi: 10.1016/j.jde.2019.01.004.  Google Scholar

[28]

H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73 (2005), 249-258.  doi: 10.1007/s11005-005-0021-y.  Google Scholar

[29]

S. Machihara, One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005), 277-290.  doi: 10.3934/dcds.2005.13.277.  Google Scholar

[30]

S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.  doi: 10.1142/S0219199707002484.  Google Scholar

[31]

S. MachiharaM. NakamuraK. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[33]

S. MachiharaK. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.  doi: 10.1215/0023608X-2009-018.  Google Scholar

[34]

S. Masaki and J. Segata, Modified scattering for the quadratic nonlinear Klein-Gordon equation in two dimensions, Trans. Amer. Math. Soc., 370 (2018), 8155-8170.  doi: 10.1090/tran/7262.  Google Scholar

[35]

C. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31.  doi: 10.1002/cpa.3160250103.  Google Scholar

[36]

K. Moriyama, Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, 10 (1997), 499-520.   Google Scholar

[37]

K. MoriyamaS. Tonegawa and Y. Tsutsumi, Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40 (1997), 313-333.   Google Scholar

[38]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions $1$ and $2$, J. Funct. Anal., 169 (1999), 201-225.  doi: 10.1006/jfan.1999.3503.  Google Scholar

[39]

I. P. Naumkin, Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016), 1633-1664.  doi: 10.1016/j.jmaa.2015.09.049.  Google Scholar

[40]

I. P. Naumkin, Klein-Gordon equation with critical nonlinearity and inhomogeneous Dirichlet boundary conditions, Differential Integral Equations, 29 (2016), 55-92.   Google Scholar

[41]

I. P. Naumkin, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.  doi: 10.1016/j.jde.2016.07.003.  Google Scholar

[42]

I. Naumkin, Neumann problem for the nonlinear Klein-Gordon equation, Nonlinear Anal., 149 (2017), 81-110.  doi: 10.1016/j.na.2016.10.014.  Google Scholar

[43]

T. OzawaK. Tsutaya and Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222 (1996), 341-362.  doi: 10.1007/BF02621870.  Google Scholar

[44]

H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270.  doi: 10.1007/BF01181697.  Google Scholar

[45]

H. Pecher, Low-energy scattering for nonlinear Klein-Gordon equations, J. Funct. Anal., 63 (1985), 101-122.  doi: 10.1016/0022-1236(85)90100-4.  Google Scholar

[46]

H. Pecher, Local solutions of semilinear wave equations in $H^{s+1}$, Math. Methods Appl. Sci., 19 (1996), 145-170.  doi: 10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M.  Google Scholar

[47]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 673-685.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[48]

H. Sasaki, Small data scattering for the one-dimensional nonlinear Dirac equation with power nonlinearity, Comm. Partial Differential Equations, 40 (2015), 1959-2004.  doi: 10.1080/03605302.2015.1081608.  Google Scholar

[49]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010), 265-278.   Google Scholar

[50]

J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38 (1985), 685-696.  doi: 10.1002/cpa.3160380516.  Google Scholar

[51]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.  doi: 10.1103/PhysRevD.1.2766.  Google Scholar

[52]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[53]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[54]

W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.  Google Scholar

[55]

B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.  Google Scholar

[56]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.  doi: 10.1016/0003-4916(58)90015-0.  Google Scholar

[57]

N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22 (1998), 193-211.  doi: 10.21099/tkbjm/1496163480.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Commun. Math. Phys., 335 (2015), 43-82.  doi: 10.1007/s00220-014-2164-0.  Google Scholar

[3]

I. Bejenaru and S. Herr, The cubic Dirac equation: Small initial data in $H^{\frac 12}(\Bbb R^2)$, Commun. Math. Phys., 343 (2016), 515-562.  doi: 10.1007/s00220-015-2508-4.  Google Scholar

[4]

P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math. Z., 186 (1984), 383-391.  doi: 10.1007/BF01174891.  Google Scholar

[5]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344.  doi: 10.1016/0022-0396(85)90083-X.  Google Scholar

[6]

T. Candy, Global existence for an $L^{2}$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.   Google Scholar

[7]

T. Candy and H. Lindblad, Long range scattering for the cubic Dirac equation on $\Bbb R^{1+1}$, Differential Integral Equations, 31 (2018), 507-518.   Google Scholar

[8]

T. CazenaveF. Dickstein and F. B. Weissler, Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations, Nagoya Math. J., 226 (2017), 44-70.  doi: 10.1017/nmj.2016.35.  Google Scholar

[9]

T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.  Google Scholar

[10]

T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.  Google Scholar

[11]

J.-M. Delort, Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), 1–61. doi: 10.1016/S0012-9593(00)01059-4.  Google Scholar

[12]

J.-M. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[13]

J.-P. Dias and M. Figueira, Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986), 309-316.   Google Scholar

[14]

M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s({\bf{R}}^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362.  doi: 10.1137/S0036141095283017.  Google Scholar

[15]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math Z., 189 (1985), 487-505.  doi: 10.1007/BF01168155.  Google Scholar

[16]

J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 399-442.   Google Scholar

[17]

J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35.  doi: 10.1016/S0294-1449(16)30329-8.  Google Scholar

[18]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations, Comm. Math. Phys., 123 (1989), 535-573.  doi: 10.1007/BF01218585.  Google Scholar

[19]

N. Hayashi and P. I. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys., 59 (2008), 1002-1028.  doi: 10.1007/s00033-007-7008-8.  Google Scholar

[20]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions, J. Differential Equations, 244 (2008), 188-199.  doi: 10.1016/j.jde.2007.10.002.  Google Scholar

[21]

N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations, Commun. Contemp. Math., 11 (2009), 771-781.  doi: 10.1142/S0219199709003582.  Google Scholar

[22]

H. Kalf and O. Yamada, Essential self-adjointness of $n$-dimensional Dirac operators with a variable mass term, J. Math. Phys., 42 (2001), 2667-2676.  doi: 10.1063/1.1367331.  Google Scholar

[23]

S. Katayama, A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension, J. Math. Kyoto Univ., 39 (1999), 203-213.  doi: 10.1215/kjm/1250517908.  Google Scholar

[24]

S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38 (1985), 631-641.  doi: 10.1002/cpa.3160380512.  Google Scholar

[25]

F. Linares, H. Miyazaki and G. Ponce, On a class of solutions to the generalized KdV type equation, Commun. Contemp. Math., 21 (2019), 1850056, 21 pp. doi: 10.1142/S0219199718500566.  Google Scholar

[26]

F. LinaresG. Ponce and G. N. Santos, On a class of solutions to the generalized derivative Schrödinger equations, Acta. Math. Sin. (Engl. Ser.), 35 (2019), 1057-1073.  doi: 10.1007/s10114-019-7540-4.  Google Scholar

[27]

F. LinaresG. Ponce and G. N. Santos, On a class to the generalized derivative Schrödinger equations II, J. Differential Equations, 267 (2019), 97-118.  doi: 10.1016/j.jde.2019.01.004.  Google Scholar

[28]

H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73 (2005), 249-258.  doi: 10.1007/s11005-005-0021-y.  Google Scholar

[29]

S. Machihara, One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005), 277-290.  doi: 10.3934/dcds.2005.13.277.  Google Scholar

[30]

S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.  doi: 10.1142/S0219199707002484.  Google Scholar

[31]

S. MachiharaM. NakamuraK. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., 219 (2005), 1-20.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the relativistic limit for the nonlinear Dirac equation, Rev. Math. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[33]

S. MachiharaK. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.  doi: 10.1215/0023608X-2009-018.  Google Scholar

[34]

S. Masaki and J. Segata, Modified scattering for the quadratic nonlinear Klein-Gordon equation in two dimensions, Trans. Amer. Math. Soc., 370 (2018), 8155-8170.  doi: 10.1090/tran/7262.  Google Scholar

[35]

C. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31.  doi: 10.1002/cpa.3160250103.  Google Scholar

[36]

K. Moriyama, Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, 10 (1997), 499-520.   Google Scholar

[37]

K. MoriyamaS. Tonegawa and Y. Tsutsumi, Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40 (1997), 313-333.   Google Scholar

[38]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions $1$ and $2$, J. Funct. Anal., 169 (1999), 201-225.  doi: 10.1006/jfan.1999.3503.  Google Scholar

[39]

I. P. Naumkin, Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016), 1633-1664.  doi: 10.1016/j.jmaa.2015.09.049.  Google Scholar

[40]

I. P. Naumkin, Klein-Gordon equation with critical nonlinearity and inhomogeneous Dirichlet boundary conditions, Differential Integral Equations, 29 (2016), 55-92.   Google Scholar

[41]

I. P. Naumkin, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.  doi: 10.1016/j.jde.2016.07.003.  Google Scholar

[42]

I. Naumkin, Neumann problem for the nonlinear Klein-Gordon equation, Nonlinear Anal., 149 (2017), 81-110.  doi: 10.1016/j.na.2016.10.014.  Google Scholar

[43]

T. OzawaK. Tsutaya and Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222 (1996), 341-362.  doi: 10.1007/BF02621870.  Google Scholar

[44]

H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270.  doi: 10.1007/BF01181697.  Google Scholar

[45]

H. Pecher, Low-energy scattering for nonlinear Klein-Gordon equations, J. Funct. Anal., 63 (1985), 101-122.  doi: 10.1016/0022-1236(85)90100-4.  Google Scholar

[46]

H. Pecher, Local solutions of semilinear wave equations in $H^{s+1}$, Math. Methods Appl. Sci., 19 (1996), 145-170.  doi: 10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M.  Google Scholar

[47]

H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 673-685.  doi: 10.3934/cpaa.2014.13.673.  Google Scholar

[48]

H. Sasaki, Small data scattering for the one-dimensional nonlinear Dirac equation with power nonlinearity, Comm. Partial Differential Equations, 40 (2015), 1959-2004.  doi: 10.1080/03605302.2015.1081608.  Google Scholar

[49]

S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010), 265-278.   Google Scholar

[50]

J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38 (1985), 685-696.  doi: 10.1002/cpa.3160380516.  Google Scholar

[51]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.  doi: 10.1103/PhysRevD.1.2766.  Google Scholar

[52]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[53]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[54]

W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.  Google Scholar

[55]

B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.  Google Scholar

[56]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.  doi: 10.1016/0003-4916(58)90015-0.  Google Scholar

[57]

N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22 (1998), 193-211.  doi: 10.21099/tkbjm/1496163480.  Google Scholar

[1]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[7]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[10]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[11]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[12]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[13]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[16]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[17]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[19]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[20]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (51)
  • HTML views (135)
  • Cited by (0)

Other articles
by authors

[Back to Top]