May  2021, 14(5): 1673-1692. doi: 10.3934/dcdss.2020449

The algorithmic numbers in non-archimedean numerical computing environments

1. 

Department of Mathematics, University of Pisa, 56127 Tuscany, IT

2. 

Department of Information Engineering, University of Pisa, 56126 Tuscany, IT

* Corresponding author: Marco Cococcioni (marco.cococcioni@unipi.it)

Received  February 2020 Revised  June 2020 Published  May 2021 Early access  November 2020

There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [1,5,13,23]. However, until now, the Non-standard techniques have been applied to theoretical models. In this paper we investigate the possibility to implement such models in numerical simulations. First we define the field of Euclidean numbers which is a particular field of hyperreal numbers. Then, we introduce a set of families of Euclidean numbers, that we have called altogether algorithmic numbers, some of which are inspired by the IEEE 754 standard for floating point numbers. In particular, we suggest three formats which are relevant from the hardware implementation point of view: the Polynomial Algorithmic Numbers, the Bounded Algorithmic Numbers and the Truncated Algorithmic Numbers. In the second part of the paper, we show a few applications of such numbers.

Citation: Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449
References:
[1]

A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. Google Scholar

[2]

V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. Google Scholar

[3]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi: 10.1007/978-3-642-57186-2_12.  Google Scholar

[4]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000.  Google Scholar

[5]

V. Benci, Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.  doi: 10.1515/ans-2013-0212.  Google Scholar

[6]

V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018.  Google Scholar

[7]

V. Benci and M. Di Nasso, Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.  doi: 10.1016/S0001-8708(02)00012-9.  Google Scholar

[8]

V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.  Google Scholar

[9]

V. BenciM. Di Nasso and M. Forti, An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.  doi: 10.1016/j.apal.2006.01.008.  Google Scholar

[10]

V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. Google Scholar

[11]

V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006.  Google Scholar

[12]

V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.   Google Scholar

[13]

V. Benci and L. Luperi Baglini, Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.  doi: 10.3934/dcdss.2014.7.593.  Google Scholar

[14]

M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp. doi: 10.1016/j.cnsns.2020.105177.  Google Scholar

[15]

M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020 doi: 10.1007/s11590-020-01644-6.  Google Scholar

[16]

M. CococcioniM. Pappalardo and Y. D. Sergeyev, Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.  doi: 10.1016/j.amc.2017.05.058.  Google Scholar

[17]

G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003.  Google Scholar

[18]

L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.   Google Scholar

[19]

L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356. doi: 10.1016/j.amc.2020.125356.  Google Scholar

[20]

P. FletcherK. HrbacekV. KanoveiM. G. KatzC. Lobry and S. Sanders, Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.  doi: 10.14321/realanalexch.42.2.0193.  Google Scholar

[21]

L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687. doi: 10.1016/j.swevo.2020.100687.  Google Scholar

[22]

T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. Google Scholar

[23] E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.  doi: 10.1515/9781400882144.  Google Scholar
[24]

K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. Google Scholar

[25]

Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.  doi: 10.4171/EMSS/4-2-3.  Google Scholar

show all references

References:
[1]

A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. Google Scholar

[2]

V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. Google Scholar

[3]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi: 10.1007/978-3-642-57186-2_12.  Google Scholar

[4]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000.  Google Scholar

[5]

V. Benci, Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.  doi: 10.1515/ans-2013-0212.  Google Scholar

[6]

V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018.  Google Scholar

[7]

V. Benci and M. Di Nasso, Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.  doi: 10.1016/S0001-8708(02)00012-9.  Google Scholar

[8]

V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.  Google Scholar

[9]

V. BenciM. Di Nasso and M. Forti, An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.  doi: 10.1016/j.apal.2006.01.008.  Google Scholar

[10]

V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. Google Scholar

[11]

V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006.  Google Scholar

[12]

V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.   Google Scholar

[13]

V. Benci and L. Luperi Baglini, Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.  doi: 10.3934/dcdss.2014.7.593.  Google Scholar

[14]

M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp. doi: 10.1016/j.cnsns.2020.105177.  Google Scholar

[15]

M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020 doi: 10.1007/s11590-020-01644-6.  Google Scholar

[16]

M. CococcioniM. Pappalardo and Y. D. Sergeyev, Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.  doi: 10.1016/j.amc.2017.05.058.  Google Scholar

[17]

G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003.  Google Scholar

[18]

L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.   Google Scholar

[19]

L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356. doi: 10.1016/j.amc.2020.125356.  Google Scholar

[20]

P. FletcherK. HrbacekV. KanoveiM. G. KatzC. Lobry and S. Sanders, Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.  doi: 10.14321/realanalexch.42.2.0193.  Google Scholar

[21]

L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687. doi: 10.1016/j.swevo.2020.100687.  Google Scholar

[22]

T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. Google Scholar

[23] E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.  doi: 10.1515/9781400882144.  Google Scholar
[24]

K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. Google Scholar

[25]

Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.  doi: 10.4171/EMSS/4-2-3.  Google Scholar

Figure 1.  Feasible region (the vertical line on the left is positioned at $ x_1 = -\alpha $, while the vertical constraint on the right is at $ x_1 = \alpha $. The upper horizontal constraint at $ x_2 = 1 $ and the lower constraint at $ x_2 = -1. $
[1]

Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663

[2]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[3]

Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751

[4]

H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans. A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences & Engineering, 2012, 9 (4) : 699-736. doi: 10.3934/mbe.2012.9.699

[5]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[6]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[7]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[8]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[9]

Dmitry Krachun, Zhi-Wei Sun. On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28 (1) : 559-566. doi: 10.3934/era.2020029

[10]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[11]

Wen Zhang, Lily Li Liu. Asymptotic normality of associated Lah numbers. Mathematical Foundations of Computing, 2021, 4 (3) : 185-191. doi: 10.3934/mfc.2021011

[12]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[13]

Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots. Journal of Modern Dynamics, 2012, 6 (4) : 539-561. doi: 10.3934/jmd.2012.6.539

[14]

Zengjing Chen, Weihuan Huang, Panyu Wu. Extension of the strong law of large numbers for capacities. Mathematical Control & Related Fields, 2019, 9 (1) : 175-190. doi: 10.3934/mcrf.2019010

[15]

Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027

[16]

Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517

[17]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[18]

Matthias Büger. Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 691-708. doi: 10.3934/dcds.1998.4.691

[19]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[20]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (184)
  • HTML views (182)
  • Cited by (0)

Other articles
by authors

[Back to Top]