doi: 10.3934/dcdss.2020450

A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II

1. 

Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1 Trieste, 34127, Italy

2. 

Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan

* Corresponding author: Scipio Cuccagna

Received  December 2019 Revised  August 2020 Published  November 2020

Fund Project: S.C. was supported by grant FRA 2018 from the University of Trieste; M.M. was supported by the JSPS KAKENHI Grant Number 19K03579, JP17H02851 and JP17H02853

We give short survey on the question of asymptotic stability of ground states of nonlinear Schrödinger equations, focusing primarily on the so called nonlinear Fermi Golden Rule.

Citation: Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020450
References:
[1]

R. Adami, D. Noja and C. Ortoleva, Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three, J. Math. Phys., 54 (2013), 013501, 33 pp. doi: 10.1063/1.4772490.  Google Scholar

[2]

X. An and A. Soffer, Fermi's golden rule and $H^1$ scattering for nonlinear Klein–Gordon equations with metastable states, Discrete Contin. Dyn. Syst., 40 (2020), 331-373.  doi: 10.3934/dcds.2020013.  Google Scholar

[3]

G. Artbazar and K. Yajima, The $L^p$-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240.   Google Scholar

[4]

R. Asad and G. Simpson, Embedded eigenvalues and the nonlinear Schrödinger equation, J. Math. Phys., 52 (2011), 033511, 26 pp. doi: 10.1063/1.3567152.  Google Scholar

[5]

D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.  doi: 10.1007/s00220-013-1684-3.  Google Scholar

[6]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.  doi: 10.1353/ajm.2011.0034.  Google Scholar

[7]

D. Bambusi and A. Maspero, Freezing of energy of a soliton in an external potential, Comm. Math. Phys., 344 (2016), 155-191.  doi: 10.1007/s00220-015-2570-y.  Google Scholar

[8]

J. T. Beale, Exact solitary water waves with capillary ripples at infinity, Comm. Pure Appl. Math., 44 (1991), 211-257.  doi: 10.1002/cpa.3160440204.  Google Scholar

[9]

M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.  doi: 10.1215/00127094-1433394.  Google Scholar

[10]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and T. S. Ratiu, Dissipation induced instabilities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 37-90.  doi: 10.1016/S0294-1449(16)30196-2.  Google Scholar

[11]

C. Bonanno, Long time dynamics of highly concentrated solitary waves for the nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 717-735.  doi: 10.1016/j.jde.2014.10.002.  Google Scholar

[12]

M. BorgheseR. Jenkins and K. D. T.-R. McLaughlin, Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 887-920.  doi: 10.1016/j.anihpc.2017.08.006.  Google Scholar

[13]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.  doi: 10.1080/03605302.2012.665973.  Google Scholar

[14]

J. P. Boyd, Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics, Mathematics and its Applications, vol. 442, Generalized solitons and hyperasymptotic perturbation theory, Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4615-5825-5.  Google Scholar

[15]

V. S. Buslaev and V. E. Grikurov, Simulation of instability of bright solitons for NLS with saturating nonlinearity, Math. Comput. Simulation, 56 (2001), 539-546.  doi: 10.1016/S0378-4754(01)00323-8.  Google Scholar

[16]

V. S. BuslaevA. I. KomechE. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger quation coupled to nonlinear oscillaton, Commun. Partial Differ. Equ., 33 (2008), 669-705.  doi: 10.1080/03605300801970937.  Google Scholar

[17]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, St. Petersburg Math. J., 4 (1993), 1111-1142.   Google Scholar

[18]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear Evolution Equations, editor N.N. Uraltseva, Transl. Ser. 2, Amer. Math. Soc., Amer. Math. Soc., Providence, 164 (1995), 75–98. doi: 10.1090/trans2/164/04.  Google Scholar

[19]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 20 (2003), 419-475.  doi: 10.1016/S0294-1449(02)00018-5.  Google Scholar

[20]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, Courant Lecture Notes, American Mathematical Society, Providence, 2003. doi: 10.1090/cln/010.  Google Scholar

[21]

S.-M. ChangS. GustafsonK. Nakanish and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.  doi: 10.1137/050648389.  Google Scholar

[22]

A. Comech, Solutions with compact time spectrum to nonlinear Klein–Gordon and Schrödinger equations and the Titchmarsh theorem for partial convolution, Arnold Math. J., 5 (2019), 315-338.  doi: 10.1007/s40598-019-00122-x.  Google Scholar

[23]

A. Comech and S. Cuccagna, On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations, preprint, arXiv: 1801.04079. Google Scholar

[24]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), 1565-1607.  doi: 10.1002/cpa.10104.  Google Scholar

[25]

O. CostinM. Huang and W. Schlag, On the spectral properties of $L_{\pm}$ in three dimensions, Nonlinearity, 25 (2012), 125-164.  doi: 10.1088/0951-7715/25/1/125.  Google Scholar

[26]

S. Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, in Dispersive Nonlinear Problems in Mathematical Physics, 21–57, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.  Google Scholar

[27]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[28]

S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.  doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[29]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure App. Math., 54 (2001), 1110–1145. erratum Comm. Pure Appl. Math., 58 (2005), p. 147. doi: 10.1002/cpa.1018.  Google Scholar

[30]

S. Cuccagna, On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15 (2003), 877-903.  doi: 10.1142/S0129055X03001849.  Google Scholar

[31]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non–trapping potential, J. Differential Eq., 256 (2014), 1395-1466.  doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[32]

S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential, Anal. PDE, 8 (2015), 1289-1349.  doi: 10.2140/apde.2015.8.1289.  Google Scholar

[33]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.  doi: 10.3934/dcds.2015.35.3343.  Google Scholar

[34]

S. Cuccagna and M. Maeda, On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.  doi: 10.1007/s00332-016-9322-9.  Google Scholar

[35]

S. Cuccagna and M. Maeda, On Nonlinear profile decompositions and scattering for an NLS–ODE model, Int. Math. Res. Not. IMRN, 2020 (2020), 5679-5722.  doi: 10.1093/imrn/rny173.  Google Scholar

[36]

S. Cuccagna and M. Maeda, Long time oscillation of solutions of nonlinear Schrödinger equations near minimal mass ground state, J. Differential Equations, 268 (2020), 6416-6480.  doi: 10.1016/j.jde.2019.11.047.  Google Scholar

[37]

S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311-4331.  doi: 10.1137/19M1258402.  Google Scholar

[38]

S. CuccagnaM. Maeda and Tuoc V. Phan, On small energy stabilization in the NLKG with a trapping potential, Nonlinear Anal., 146 (2016), 32-58.  doi: 10.1016/j.na.2016.08.009.  Google Scholar

[39]

S. Cuccagna and M. Maeda, Coordinates at small energy and refined profiles for the Nonlinear Schrödinger Equation, preprint, arXiv: 2004.01366. Google Scholar

[40]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77.  doi: 10.1007/s00220-008-0605-3.  Google Scholar

[41]

S. Cuccagna and D. E. Pelinovsky, The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., 93 (2014), 791-822.  doi: 10.1080/00036811.2013.866227.  Google Scholar

[42]

S. CuccagnaD. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem, Comm. Pure Appl. Math., 58 (2005), 1-29.  doi: 10.1002/cpa.20050.  Google Scholar

[43]

S. Cuccagna and M. Tarulli, On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential, J. Math. Anal. Appl., 436 (2016), 1332-1368.  doi: 10.1016/j.jmaa.2015.12.049.  Google Scholar

[44]

S. Cuccagna and M. Tarulli, On asymptotic stability in energy space of ground states of NLS in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1361-1386.  doi: 10.1016/j.anihpc.2008.12.001.  Google Scholar

[45]

S. Cuccagna and M. Tarulli, On asymptotic stability of standing waves of discrete Schrödinger equation in $\Bbb Z$, SIAM J. Math. Anal., 41 (2009), 861-885.  doi: 10.1137/080732821.  Google Scholar

[46]

K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Partial Differential Equations, 34 (2009), 1074-1113.  doi: 10.1080/03605300903076831.  Google Scholar

[47]

S. De Bièvre, F. Genoud and S. Rota Nodari, Orbital stability: Analysis meets geometry, Nonlinear Optical and Atomic Systems, Lecture Notes in Math., Springer, Cham, 2146 (2015), 147–273. doi: 10.1007/978-3-319-19015-0_3.  Google Scholar

[48]

P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study, Acta Math., 188 (2002), 163-262.  doi: 10.1007/BF02392683.  Google Scholar

[49]

L. Demanet and W. Schlag, Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity, 19 (2006), 829-852.  doi: 10.1088/0951-7715/19/4/004.  Google Scholar

[50]

Q. DengA. Soffer and X. Yao, Soliton-potential interactions for nonlinear Schrödinger equation in $\Bbb R^3$, SIAM J. Math. Anal., 50 (2018), 5243-5292.  doi: 10.1137/17M1147275.  Google Scholar

[51]

T. DuyckaertsC. Kenig and F. Merle, Classification of radial solutions of the focusing, energy–critical wave equation, Camb. J. Math., 1 (2013), 75-144.  doi: 10.4310/CJM.2013.v1.n1.a3.  Google Scholar

[52]

V. Fleurov and A. Soffer, Soliton in a well. Dynamics and tunneling, preprint, arXiv: 1305.4279v1. Google Scholar

[53]

J. FröhlichS. GustafsonB. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), 613-642.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[54]

Z. Gang, Perturbation expansion and N-th order fermi golden rule of the nonlinear Schrödinger equations, J. Math. Phys., 48 (2007), p. 053509. Google Scholar

[55]

Z. Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. Math., 216 (2007), 443-490.  doi: 10.1016/j.aim.2007.04.018.  Google Scholar

[56]

Z. Gang and I. M. Sigal, Asymptotic stability of nonlinear Schrödinger equations with potential, Rev. Math. Phys., 17 (2005), 1143-1207.  doi: 10.1142/S0129055X05002522.  Google Scholar

[57]

Z. Gang and M. I. Weinstein, Dynamics of nonlinear Schrödinger/Gross-Pitaeskii equations; Mass transfer in systems with solitons and degenerate neutral modes, Anal. PDE, 1 (2008), 267-322.  doi: 10.2140/apde.2008.1.267.  Google Scholar

[58]

Z. Gang and M. I. Weinstein, Equipartition of mass in nonlinear Schrödinger/Gross-Pitaeskii equations, Appl. Math. Res. Express. AMRX, 2011 (2011), 123-181.  doi: 10.1093/amrx/abr001.  Google Scholar

[59]

R. H. GoodmanJ. L. Marzuola and M. I. Weinstein, Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger/Gross-Pitaevskii equation, Discrete Contin. Dyn. Syst., 35 (2015), 225-246.  doi: 10.3934/dcds.2015.35.225.  Google Scholar

[60]

M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[61]

S. GustafsonK. Nakanishi and T.-P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not., 66 (2004), 3559-3584.  doi: 10.1155/S1073792804132340.  Google Scholar

[62]

S. Gustafson and T. V. Phan, Stable directions for degenerate excited states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 43 (2011), 1716-1758.  doi: 10.1137/10079210X.  Google Scholar

[63]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, SIAM J. Appl. Math., 64 (2003/04), 484-524.  doi: 10.1137/S0036139902418717.  Google Scholar

[64]

A. Hoffman and J. D. Wright, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), 33-59.  doi: 10.1016/j.physd.2017.07.004.  Google Scholar

[65]

J. HolmerJ. Marzuola and M. Zworski, Soliton splitting by external delta potentials, J. Nonlinear Sci., 17 (2007), 349-367.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[66]

J. HolmerJ. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[67]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, Int. Math. Res. Not. IMRN, 2008 (2008), Art. ID rnn026, 36. doi: 10.1093/imrn/rnn026.  Google Scholar

[68]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Mod. Dyn., 1 (2007), 689-718.  doi: 10.3934/jmd.2007.1.689.  Google Scholar

[69]

J. S. Howland, On the Weinstein-Aronszajn formula, Arch. Rational Mech. Anal., 39 (1970), 323-339.  doi: 10.1007/BF00251295.  Google Scholar

[70]

J. S. Howland, Puiseux series for resonances at an embedded eigenvalue, Pacific J. Math., 55 (1974), 157-176.  doi: 10.2140/pjm.1974.55.157.  Google Scholar

[71]

B. L. G. JonssonJ. FröhlichS. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), 621-660.  doi: 10.1007/s00023-006-0263-y.  Google Scholar

[72]

R. Johnson and X. B. Pan, On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 763-782.  doi: 10.1017/S030821050003095X.  Google Scholar

[73]

M. A. Johnson and J. D. Wright, Generalized solitary waves in the gravity–capillary Whitham equation, Stud. Appl. Math., 144 (2020), 102-130.  doi: 10.1111/sapm.12288.  Google Scholar

[74]

J.-L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.  Google Scholar

[75]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.  Google Scholar

[76]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[77]

E. KirrP. G. Kevrekidis and D. E. Pelinovsky., Symmetry-breaking bifurcation in Nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.  doi: 10.1007/s00220-011-1361-3.  Google Scholar

[78]

E. W. KirrP. G. KevrekidisE. Shlizerman and M. I. Weinstein, Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross-Pitaevskii equations, SIAM J. Math. Anal., 40 (2008), 566-604.  doi: 10.1137/060678427.  Google Scholar

[79]

E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases, J. Funct. Anal., 257 (2009), 3691-3747.  doi: 10.1016/j.jfa.2009.08.010.  Google Scholar

[80]

E. Kirr and V. Natarajan, The global bifurcation picture for ground states in nonlinear Schr ödinger equations, preprint, arXiv: 1811.05716. Google Scholar

[81]

E. Kirr and A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schr ödinger equation including subcritical cases, J. Differential Equations, 247 (2009), 710-735.  doi: 10.1016/j.jde.2009.04.015.  Google Scholar

[82]

A. I. Komech, On attractor of a singular nonlinear U(1)-invariant Klein-Gordon equation, in Progress in Analysis, Vol. I, II (Berlin, 2001), pp. 599–611, World Sci. Publ., River Edge, NJ, 2003.  Google Scholar

[83]

A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.  doi: 10.1016/j.anihpc.2008.03.005.  Google Scholar

[84]

A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction, SIAM J. Math. Anal., 42 (2010), 2944-2964.  doi: 10.1137/090772125.  Google Scholar

[85]

A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl., 93 (2010), 91-111.  doi: 10.1016/j.matpur.2009.08.011.  Google Scholar

[86]

A. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.  doi: 10.3934/cpaa.2012.11.1063.  Google Scholar

[87]

M. KowalczykY. Martel and C. Muñoz, Kink dynamics in the $\phi ^4$ model: Asymptotic stability for odd perturbations in the energy space, J. Amer. Math. Soc., 30 (2017), 769-798.  doi: 10.1090/jams/870.  Google Scholar

[88]

M. Kowalczyk, Y. Martel and C. Muñoz, Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes, Jour. of the Europ. Math. Soc., to appear. Google Scholar

[89]

M. Kowalczyk, Y. Marte, C. Muñoz and H. Van Den Bosch, A sufficient condition for asymptotic stability of kinks in general $(1+1)$-scalar field models, preprint, arXiv: 2008.01276. Google Scholar

[90]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc., 19 (2006), 815-920.  doi: 10.1090/S0894-0347-06-00524-8.  Google Scholar

[91]

C. J. Lustri, Nanoptera and Stokes curves in the 2-periodic Fermi–Pasta–Ulam–Tsingou equation, Phys. D, 402 (2020), 132239, 13 pp. doi: 10.1016/j.physd.2019.132239.  Google Scholar

[92]

C. J. Lustri and M. A. Porter, Nanoptera in a period-2 Toda chain, SIAM J. Appl. Dyn. Syst., 17 (2018), 1182-1212.  doi: 10.1137/16M108639X.  Google Scholar

[93]

Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391-427.  doi: 10.1007/s00208-007-0194-z.  Google Scholar

[94]

J. L. MarzuolaS. Raynor and G. Simpson, A system of ODEs for a perturbation of a minimal mass soliton, J. Nonlinear Sci., 20 (2010), 425-461.  doi: 10.1007/s00332-010-9064-z.  Google Scholar

[95]

J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators, Nonlinearity, 24 (2011), 389-429.  doi: 10.1088/0951-7715/24/2/003.  Google Scholar

[96]

J. L. Marzuola and M. I. Weinstein, Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations, Discrete Contin. Dyn. Syst., 28 (2010), 1505-1554.  doi: 10.3934/dcds.2010.28.1505.  Google Scholar

[97]

S. MasakiJ. Murphy and J. Segata, Stability of small solitary waves for the 1$d$ NLS with an attractive delta potential, Anal. PDE, 13 (2020), 1099-1128.  doi: 10.2140/apde.2020.13.1099.  Google Scholar

[98]

S. MasakiJ. Murphy and J. Segata, Modified scattering for the one-dimensional cubic NLS with a repulsive delta potential, Int. Math. Res. Not. IMRN, 2019 (2019), 7577-7603.  doi: 10.1093/imrn/rny011.  Google Scholar

[99]

S. Masaki, J. Murphy and J. Segata, Asymptotic stability of solitary waves for the $1d$ NLS with an attractive delta potential, preprint, arXiv: 2008.11645. Google Scholar

[100]

F. Merle and P. Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[101]

F. Merle and P. Raphael, Sharp upper bound on the blow–up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642.  doi: 10.1007/s00039-003-0424-9.  Google Scholar

[102]

F. Merle and P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[103]

T. Mizumachi, Asymptotic stability of small solitons to 1D nonlinear Schr?dinger equations with potential, J. Math. Kyoto Univ., 48 (2008), 471-497.  doi: 10.1215/kjm/1250271380.  Google Scholar

[104]

T. Mizumachi, Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., 47 (2007), 599-620.  doi: 10.1215/kjm/1250281026.  Google Scholar

[105]

C. Munoz, Sharp inelastic character of slowly varying NLS solitons, preprint, arXiv: 1202.5807. Google Scholar

[106]

C. Muñoz, On the soliton dynamics under slowly varying medium, for nonlinear Schrödinger equations, Math. Ann., 353 (2012), 867-943.  doi: 10.1007/s00208-011-0706-8.  Google Scholar

[107]

K. Nakanishi, Global dynamics below excited solitons for the nonlinear Schrödinger equation with a potential, J. Math. Soc. Japan, 69 (2017), 1353-1401.  doi: 10.2969/jmsj/06941353.  Google Scholar

[108]

K. NakanishiT. V. Phan and T.-P. Tsai, Small solutions of nonlinear Schrödinger equations near first excited states, J. Funct. Anal., 263 (2012), 703-781.  doi: 10.1016/j.jfa.2012.04.017.  Google Scholar

[109]

I. Naumkin and P. Raphaël, On travelling waves of the non linear Schrödinger equation escaping a potential well, Ann. Henri Poincaré, 21 (2020), 1677-1758.  doi: 10.1007/s00023-020-00897-2.  Google Scholar

[110]

D. E. PelinovskyY. S. Kivshar and V. V. Afanasjev, Internal modes of envelope solitons, Phys. D, 116 (1998), 121-142.  doi: 10.1016/S0167-2789(98)80010-9.  Google Scholar

[111]

G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 357-384.  doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[112]

G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations, Math. Res. Lett., 16 (2009), 477-486.  doi: 10.4310/MRL.2009.v16.n3.a8.  Google Scholar

[113]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.  doi: 10.1081/PDE-200033754.  Google Scholar

[114]

G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.  Google Scholar

[115]

C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations, J. Differential Equations, 141 (1997), 310-326.  doi: 10.1006/jdeq.1997.3345.  Google Scholar

[116]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS, preprint, arXiv: math/0309114v1. Google Scholar

[117]

A. Saalmann, Asymptotic stability of $N$-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., 14 (2017), 455-485.  doi: 10.1142/S0219891617500151.  Google Scholar

[118]

W. Schlag, Stable manifolds for an orbitally unstable NLS, Ann. of Math., 169 (2009), 139-227.  doi: 10.4007/annals.2009.169.139.  Google Scholar

[119]

I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.   Google Scholar

[120]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146.  doi: 10.1007/BF02096557.  Google Scholar

[121]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering II. The case of anisotropic potentials and data, J. Differential Equations, 98 (1992), 376-390.  doi: 10.1016/0022-0396(92)90098-8.  Google Scholar

[122]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.  doi: 10.1007/s002220050303.  Google Scholar

[123]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16 (2004), 977-1071.  doi: 10.1142/S0129055X04002175.  Google Scholar

[124]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.  doi: 10.1007/s00032-008-0089-9.  Google Scholar

[125]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematica Sciences vol. 139, 1999, Springer, New York.  Google Scholar

[126]

S. M. Sun, Existence of a generalized solitary wave solution for water with positive Bond number less than $1/3$, J. Math. Anal. Appl., 156 (1991), 471-504.  doi: 10.1016/0022-247X(91)90410-2.  Google Scholar

[127]

T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differential Equations, 192 (2003), 225-282.  doi: 10.1016/S0022-0396(03)00041-X.  Google Scholar

[128]

T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: Resonance dominated and radiation dominated solutions, Comm. Pure Appl. Math., 55 (2002), 153-216.  doi: 10.1002/cpa.3012.  Google Scholar

[129]

T.-P. Tsai and H.-T. Yau, Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not., 2002 (2002), 1629-1673.  doi: 10.1155/S1073792802201063.  Google Scholar

[130]

T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6 (2002), 107-139.  doi: 10.4310/ATMP.2002.v6.n1.a2.  Google Scholar

[131]

T.-P. Tsai and H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations, Comm. Partial Diffierential Equations, 27 (2002), 2363-2402.  doi: 10.1081/PDE-120016161.  Google Scholar

[132]

R. Weder, The $W_{k, p}$–continuity of the Schrödinger wave operators on the line, Comm. Math. Phys., 208 (1999), 507-520.  doi: 10.1007/s002200050767.  Google Scholar

[133]

R. Weder, $L^p$-$L^{\dot p}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), 37-68.  doi: 10.1006/jfan.1999.3507.  Google Scholar

[134]

M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[135]

K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.  Google Scholar

[136]

K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators III, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346.   Google Scholar

show all references

References:
[1]

R. Adami, D. Noja and C. Ortoleva, Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three, J. Math. Phys., 54 (2013), 013501, 33 pp. doi: 10.1063/1.4772490.  Google Scholar

[2]

X. An and A. Soffer, Fermi's golden rule and $H^1$ scattering for nonlinear Klein–Gordon equations with metastable states, Discrete Contin. Dyn. Syst., 40 (2020), 331-373.  doi: 10.3934/dcds.2020013.  Google Scholar

[3]

G. Artbazar and K. Yajima, The $L^p$-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240.   Google Scholar

[4]

R. Asad and G. Simpson, Embedded eigenvalues and the nonlinear Schrödinger equation, J. Math. Phys., 52 (2011), 033511, 26 pp. doi: 10.1063/1.3567152.  Google Scholar

[5]

D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.  doi: 10.1007/s00220-013-1684-3.  Google Scholar

[6]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.  doi: 10.1353/ajm.2011.0034.  Google Scholar

[7]

D. Bambusi and A. Maspero, Freezing of energy of a soliton in an external potential, Comm. Math. Phys., 344 (2016), 155-191.  doi: 10.1007/s00220-015-2570-y.  Google Scholar

[8]

J. T. Beale, Exact solitary water waves with capillary ripples at infinity, Comm. Pure Appl. Math., 44 (1991), 211-257.  doi: 10.1002/cpa.3160440204.  Google Scholar

[9]

M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.  doi: 10.1215/00127094-1433394.  Google Scholar

[10]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and T. S. Ratiu, Dissipation induced instabilities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 37-90.  doi: 10.1016/S0294-1449(16)30196-2.  Google Scholar

[11]

C. Bonanno, Long time dynamics of highly concentrated solitary waves for the nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 717-735.  doi: 10.1016/j.jde.2014.10.002.  Google Scholar

[12]

M. BorgheseR. Jenkins and K. D. T.-R. McLaughlin, Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 887-920.  doi: 10.1016/j.anihpc.2017.08.006.  Google Scholar

[13]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.  doi: 10.1080/03605302.2012.665973.  Google Scholar

[14]

J. P. Boyd, Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics, Mathematics and its Applications, vol. 442, Generalized solitons and hyperasymptotic perturbation theory, Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4615-5825-5.  Google Scholar

[15]

V. S. Buslaev and V. E. Grikurov, Simulation of instability of bright solitons for NLS with saturating nonlinearity, Math. Comput. Simulation, 56 (2001), 539-546.  doi: 10.1016/S0378-4754(01)00323-8.  Google Scholar

[16]

V. S. BuslaevA. I. KomechE. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger quation coupled to nonlinear oscillaton, Commun. Partial Differ. Equ., 33 (2008), 669-705.  doi: 10.1080/03605300801970937.  Google Scholar

[17]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, St. Petersburg Math. J., 4 (1993), 1111-1142.   Google Scholar

[18]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear Evolution Equations, editor N.N. Uraltseva, Transl. Ser. 2, Amer. Math. Soc., Amer. Math. Soc., Providence, 164 (1995), 75–98. doi: 10.1090/trans2/164/04.  Google Scholar

[19]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 20 (2003), 419-475.  doi: 10.1016/S0294-1449(02)00018-5.  Google Scholar

[20]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, Courant Lecture Notes, American Mathematical Society, Providence, 2003. doi: 10.1090/cln/010.  Google Scholar

[21]

S.-M. ChangS. GustafsonK. Nakanish and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.  doi: 10.1137/050648389.  Google Scholar

[22]

A. Comech, Solutions with compact time spectrum to nonlinear Klein–Gordon and Schrödinger equations and the Titchmarsh theorem for partial convolution, Arnold Math. J., 5 (2019), 315-338.  doi: 10.1007/s40598-019-00122-x.  Google Scholar

[23]

A. Comech and S. Cuccagna, On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations, preprint, arXiv: 1801.04079. Google Scholar

[24]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), 1565-1607.  doi: 10.1002/cpa.10104.  Google Scholar

[25]

O. CostinM. Huang and W. Schlag, On the spectral properties of $L_{\pm}$ in three dimensions, Nonlinearity, 25 (2012), 125-164.  doi: 10.1088/0951-7715/25/1/125.  Google Scholar

[26]

S. Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, in Dispersive Nonlinear Problems in Mathematical Physics, 21–57, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.  Google Scholar

[27]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[28]

S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.  doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[29]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure App. Math., 54 (2001), 1110–1145. erratum Comm. Pure Appl. Math., 58 (2005), p. 147. doi: 10.1002/cpa.1018.  Google Scholar

[30]

S. Cuccagna, On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15 (2003), 877-903.  doi: 10.1142/S0129055X03001849.  Google Scholar

[31]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non–trapping potential, J. Differential Eq., 256 (2014), 1395-1466.  doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[32]

S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential, Anal. PDE, 8 (2015), 1289-1349.  doi: 10.2140/apde.2015.8.1289.  Google Scholar

[33]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.  doi: 10.3934/dcds.2015.35.3343.  Google Scholar

[34]

S. Cuccagna and M. Maeda, On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.  doi: 10.1007/s00332-016-9322-9.  Google Scholar

[35]

S. Cuccagna and M. Maeda, On Nonlinear profile decompositions and scattering for an NLS–ODE model, Int. Math. Res. Not. IMRN, 2020 (2020), 5679-5722.  doi: 10.1093/imrn/rny173.  Google Scholar

[36]

S. Cuccagna and M. Maeda, Long time oscillation of solutions of nonlinear Schrödinger equations near minimal mass ground state, J. Differential Equations, 268 (2020), 6416-6480.  doi: 10.1016/j.jde.2019.11.047.  Google Scholar

[37]

S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311-4331.  doi: 10.1137/19M1258402.  Google Scholar

[38]

S. CuccagnaM. Maeda and Tuoc V. Phan, On small energy stabilization in the NLKG with a trapping potential, Nonlinear Anal., 146 (2016), 32-58.  doi: 10.1016/j.na.2016.08.009.  Google Scholar

[39]

S. Cuccagna and M. Maeda, Coordinates at small energy and refined profiles for the Nonlinear Schrödinger Equation, preprint, arXiv: 2004.01366. Google Scholar

[40]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77.  doi: 10.1007/s00220-008-0605-3.  Google Scholar

[41]

S. Cuccagna and D. E. Pelinovsky, The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., 93 (2014), 791-822.  doi: 10.1080/00036811.2013.866227.  Google Scholar

[42]

S. CuccagnaD. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem, Comm. Pure Appl. Math., 58 (2005), 1-29.  doi: 10.1002/cpa.20050.  Google Scholar

[43]

S. Cuccagna and M. Tarulli, On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential, J. Math. Anal. Appl., 436 (2016), 1332-1368.  doi: 10.1016/j.jmaa.2015.12.049.  Google Scholar

[44]

S. Cuccagna and M. Tarulli, On asymptotic stability in energy space of ground states of NLS in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1361-1386.  doi: 10.1016/j.anihpc.2008.12.001.  Google Scholar

[45]

S. Cuccagna and M. Tarulli, On asymptotic stability of standing waves of discrete Schrödinger equation in $\Bbb Z$, SIAM J. Math. Anal., 41 (2009), 861-885.  doi: 10.1137/080732821.  Google Scholar

[46]

K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Partial Differential Equations, 34 (2009), 1074-1113.  doi: 10.1080/03605300903076831.  Google Scholar

[47]

S. De Bièvre, F. Genoud and S. Rota Nodari, Orbital stability: Analysis meets geometry, Nonlinear Optical and Atomic Systems, Lecture Notes in Math., Springer, Cham, 2146 (2015), 147–273. doi: 10.1007/978-3-319-19015-0_3.  Google Scholar

[48]

P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study, Acta Math., 188 (2002), 163-262.  doi: 10.1007/BF02392683.  Google Scholar

[49]

L. Demanet and W. Schlag, Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity, 19 (2006), 829-852.  doi: 10.1088/0951-7715/19/4/004.  Google Scholar

[50]

Q. DengA. Soffer and X. Yao, Soliton-potential interactions for nonlinear Schrödinger equation in $\Bbb R^3$, SIAM J. Math. Anal., 50 (2018), 5243-5292.  doi: 10.1137/17M1147275.  Google Scholar

[51]

T. DuyckaertsC. Kenig and F. Merle, Classification of radial solutions of the focusing, energy–critical wave equation, Camb. J. Math., 1 (2013), 75-144.  doi: 10.4310/CJM.2013.v1.n1.a3.  Google Scholar

[52]

V. Fleurov and A. Soffer, Soliton in a well. Dynamics and tunneling, preprint, arXiv: 1305.4279v1. Google Scholar

[53]

J. FröhlichS. GustafsonB. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), 613-642.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[54]

Z. Gang, Perturbation expansion and N-th order fermi golden rule of the nonlinear Schrödinger equations, J. Math. Phys., 48 (2007), p. 053509. Google Scholar

[55]

Z. Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. Math., 216 (2007), 443-490.  doi: 10.1016/j.aim.2007.04.018.  Google Scholar

[56]

Z. Gang and I. M. Sigal, Asymptotic stability of nonlinear Schrödinger equations with potential, Rev. Math. Phys., 17 (2005), 1143-1207.  doi: 10.1142/S0129055X05002522.  Google Scholar

[57]

Z. Gang and M. I. Weinstein, Dynamics of nonlinear Schrödinger/Gross-Pitaeskii equations; Mass transfer in systems with solitons and degenerate neutral modes, Anal. PDE, 1 (2008), 267-322.  doi: 10.2140/apde.2008.1.267.  Google Scholar

[58]

Z. Gang and M. I. Weinstein, Equipartition of mass in nonlinear Schrödinger/Gross-Pitaeskii equations, Appl. Math. Res. Express. AMRX, 2011 (2011), 123-181.  doi: 10.1093/amrx/abr001.  Google Scholar

[59]

R. H. GoodmanJ. L. Marzuola and M. I. Weinstein, Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger/Gross-Pitaevskii equation, Discrete Contin. Dyn. Syst., 35 (2015), 225-246.  doi: 10.3934/dcds.2015.35.225.  Google Scholar

[60]

M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[61]

S. GustafsonK. Nakanishi and T.-P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not., 66 (2004), 3559-3584.  doi: 10.1155/S1073792804132340.  Google Scholar

[62]

S. Gustafson and T. V. Phan, Stable directions for degenerate excited states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 43 (2011), 1716-1758.  doi: 10.1137/10079210X.  Google Scholar

[63]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, SIAM J. Appl. Math., 64 (2003/04), 484-524.  doi: 10.1137/S0036139902418717.  Google Scholar

[64]

A. Hoffman and J. D. Wright, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), 33-59.  doi: 10.1016/j.physd.2017.07.004.  Google Scholar

[65]

J. HolmerJ. Marzuola and M. Zworski, Soliton splitting by external delta potentials, J. Nonlinear Sci., 17 (2007), 349-367.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[66]

J. HolmerJ. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[67]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, Int. Math. Res. Not. IMRN, 2008 (2008), Art. ID rnn026, 36. doi: 10.1093/imrn/rnn026.  Google Scholar

[68]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Mod. Dyn., 1 (2007), 689-718.  doi: 10.3934/jmd.2007.1.689.  Google Scholar

[69]

J. S. Howland, On the Weinstein-Aronszajn formula, Arch. Rational Mech. Anal., 39 (1970), 323-339.  doi: 10.1007/BF00251295.  Google Scholar

[70]

J. S. Howland, Puiseux series for resonances at an embedded eigenvalue, Pacific J. Math., 55 (1974), 157-176.  doi: 10.2140/pjm.1974.55.157.  Google Scholar

[71]

B. L. G. JonssonJ. FröhlichS. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), 621-660.  doi: 10.1007/s00023-006-0263-y.  Google Scholar

[72]

R. Johnson and X. B. Pan, On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 763-782.  doi: 10.1017/S030821050003095X.  Google Scholar

[73]

M. A. Johnson and J. D. Wright, Generalized solitary waves in the gravity–capillary Whitham equation, Stud. Appl. Math., 144 (2020), 102-130.  doi: 10.1111/sapm.12288.  Google Scholar

[74]

J.-L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.  Google Scholar

[75]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.  Google Scholar

[76]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[77]

E. KirrP. G. Kevrekidis and D. E. Pelinovsky., Symmetry-breaking bifurcation in Nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.  doi: 10.1007/s00220-011-1361-3.  Google Scholar

[78]

E. W. KirrP. G. KevrekidisE. Shlizerman and M. I. Weinstein, Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross-Pitaevskii equations, SIAM J. Math. Anal., 40 (2008), 566-604.  doi: 10.1137/060678427.  Google Scholar

[79]

E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases, J. Funct. Anal., 257 (2009), 3691-3747.  doi: 10.1016/j.jfa.2009.08.010.  Google Scholar

[80]

E. Kirr and V. Natarajan, The global bifurcation picture for ground states in nonlinear Schr ödinger equations, preprint, arXiv: 1811.05716. Google Scholar

[81]

E. Kirr and A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schr ödinger equation including subcritical cases, J. Differential Equations, 247 (2009), 710-735.  doi: 10.1016/j.jde.2009.04.015.  Google Scholar

[82]

A. I. Komech, On attractor of a singular nonlinear U(1)-invariant Klein-Gordon equation, in Progress in Analysis, Vol. I, II (Berlin, 2001), pp. 599–611, World Sci. Publ., River Edge, NJ, 2003.  Google Scholar

[83]

A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.  doi: 10.1016/j.anihpc.2008.03.005.  Google Scholar

[84]

A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction, SIAM J. Math. Anal., 42 (2010), 2944-2964.  doi: 10.1137/090772125.  Google Scholar

[85]

A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl., 93 (2010), 91-111.  doi: 10.1016/j.matpur.2009.08.011.  Google Scholar

[86]

A. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.  doi: 10.3934/cpaa.2012.11.1063.  Google Scholar

[87]

M. KowalczykY. Martel and C. Muñoz, Kink dynamics in the $\phi ^4$ model: Asymptotic stability for odd perturbations in the energy space, J. Amer. Math. Soc., 30 (2017), 769-798.  doi: 10.1090/jams/870.  Google Scholar

[88]

M. Kowalczyk, Y. Martel and C. Muñoz, Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes, Jour. of the Europ. Math. Soc., to appear. Google Scholar

[89]

M. Kowalczyk, Y. Marte, C. Muñoz and H. Van Den Bosch, A sufficient condition for asymptotic stability of kinks in general $(1+1)$-scalar field models, preprint, arXiv: 2008.01276. Google Scholar

[90]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc., 19 (2006), 815-920.  doi: 10.1090/S0894-0347-06-00524-8.  Google Scholar

[91]

C. J. Lustri, Nanoptera and Stokes curves in the 2-periodic Fermi–Pasta–Ulam–Tsingou equation, Phys. D, 402 (2020), 132239, 13 pp. doi: 10.1016/j.physd.2019.132239.  Google Scholar

[92]

C. J. Lustri and M. A. Porter, Nanoptera in a period-2 Toda chain, SIAM J. Appl. Dyn. Syst., 17 (2018), 1182-1212.  doi: 10.1137/16M108639X.  Google Scholar

[93]

Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391-427.  doi: 10.1007/s00208-007-0194-z.  Google Scholar

[94]

J. L. MarzuolaS. Raynor and G. Simpson, A system of ODEs for a perturbation of a minimal mass soliton, J. Nonlinear Sci., 20 (2010), 425-461.  doi: 10.1007/s00332-010-9064-z.  Google Scholar

[95]

J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators, Nonlinearity, 24 (2011), 389-429.  doi: 10.1088/0951-7715/24/2/003.  Google Scholar

[96]

J. L. Marzuola and M. I. Weinstein, Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations, Discrete Contin. Dyn. Syst., 28 (2010), 1505-1554.  doi: 10.3934/dcds.2010.28.1505.  Google Scholar

[97]

S. MasakiJ. Murphy and J. Segata, Stability of small solitary waves for the 1$d$ NLS with an attractive delta potential, Anal. PDE, 13 (2020), 1099-1128.  doi: 10.2140/apde.2020.13.1099.  Google Scholar

[98]

S. MasakiJ. Murphy and J. Segata, Modified scattering for the one-dimensional cubic NLS with a repulsive delta potential, Int. Math. Res. Not. IMRN, 2019 (2019), 7577-7603.  doi: 10.1093/imrn/rny011.  Google Scholar

[99]

S. Masaki, J. Murphy and J. Segata, Asymptotic stability of solitary waves for the $1d$ NLS with an attractive delta potential, preprint, arXiv: 2008.11645. Google Scholar

[100]

F. Merle and P. Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[101]

F. Merle and P. Raphael, Sharp upper bound on the blow–up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642.  doi: 10.1007/s00039-003-0424-9.  Google Scholar

[102]

F. Merle and P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[103]

T. Mizumachi, Asymptotic stability of small solitons to 1D nonlinear Schr?dinger equations with potential, J. Math. Kyoto Univ., 48 (2008), 471-497.  doi: 10.1215/kjm/1250271380.  Google Scholar

[104]

T. Mizumachi, Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., 47 (2007), 599-620.  doi: 10.1215/kjm/1250281026.  Google Scholar

[105]

C. Munoz, Sharp inelastic character of slowly varying NLS solitons, preprint, arXiv: 1202.5807. Google Scholar

[106]

C. Muñoz, On the soliton dynamics under slowly varying medium, for nonlinear Schrödinger equations, Math. Ann., 353 (2012), 867-943.  doi: 10.1007/s00208-011-0706-8.  Google Scholar

[107]

K. Nakanishi, Global dynamics below excited solitons for the nonlinear Schrödinger equation with a potential, J. Math. Soc. Japan, 69 (2017), 1353-1401.  doi: 10.2969/jmsj/06941353.  Google Scholar

[108]

K. NakanishiT. V. Phan and T.-P. Tsai, Small solutions of nonlinear Schrödinger equations near first excited states, J. Funct. Anal., 263 (2012), 703-781.  doi: 10.1016/j.jfa.2012.04.017.  Google Scholar

[109]

I. Naumkin and P. Raphaël, On travelling waves of the non linear Schrödinger equation escaping a potential well, Ann. Henri Poincaré, 21 (2020), 1677-1758.  doi: 10.1007/s00023-020-00897-2.  Google Scholar

[110]

D. E. PelinovskyY. S. Kivshar and V. V. Afanasjev, Internal modes of envelope solitons, Phys. D, 116 (1998), 121-142.  doi: 10.1016/S0167-2789(98)80010-9.  Google Scholar

[111]

G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 357-384.  doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[112]

G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations, Math. Res. Lett., 16 (2009), 477-486.  doi: 10.4310/MRL.2009.v16.n3.a8.  Google Scholar

[113]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.  doi: 10.1081/PDE-200033754.  Google Scholar

[114]

G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.  doi: 10.1007/PL00001048.  Google Scholar

[115]

C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations, J. Differential Equations, 141 (1997), 310-326.  doi: 10.1006/jdeq.1997.3345.  Google Scholar

[116]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS, preprint, arXiv: math/0309114v1. Google Scholar

[117]

A. Saalmann, Asymptotic stability of $N$-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., 14 (2017), 455-485.  doi: 10.1142/S0219891617500151.  Google Scholar

[118]

W. Schlag, Stable manifolds for an orbitally unstable NLS, Ann. of Math., 169 (2009), 139-227.  doi: 10.4007/annals.2009.169.139.  Google Scholar

[119]

I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.   Google Scholar

[120]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146.  doi: 10.1007/BF02096557.  Google Scholar

[121]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering II. The case of anisotropic potentials and data, J. Differential Equations, 98 (1992), 376-390.  doi: 10.1016/0022-0396(92)90098-8.  Google Scholar

[122]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.  doi: 10.1007/s002220050303.  Google Scholar

[123]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16 (2004), 977-1071.  doi: 10.1142/S0129055X04002175.  Google Scholar

[124]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.  doi: 10.1007/s00032-008-0089-9.  Google Scholar

[125]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematica Sciences vol. 139, 1999, Springer, New York.  Google Scholar

[126]

S. M. Sun, Existence of a generalized solitary wave solution for water with positive Bond number less than $1/3$, J. Math. Anal. Appl., 156 (1991), 471-504.  doi: 10.1016/0022-247X(91)90410-2.  Google Scholar

[127]

T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differential Equations, 192 (2003), 225-282.  doi: 10.1016/S0022-0396(03)00041-X.  Google Scholar

[128]

T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: Resonance dominated and radiation dominated solutions, Comm. Pure Appl. Math., 55 (2002), 153-216.  doi: 10.1002/cpa.3012.  Google Scholar

[129]

T.-P. Tsai and H.-T. Yau, Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not., 2002 (2002), 1629-1673.  doi: 10.1155/S1073792802201063.  Google Scholar

[130]

T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6 (2002), 107-139.  doi: 10.4310/ATMP.2002.v6.n1.a2.  Google Scholar

[131]

T.-P. Tsai and H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations, Comm. Partial Diffierential Equations, 27 (2002), 2363-2402.  doi: 10.1081/PDE-120016161.  Google Scholar

[132]

R. Weder, The $W_{k, p}$–continuity of the Schrödinger wave operators on the line, Comm. Math. Phys., 208 (1999), 507-520.  doi: 10.1007/s002200050767.  Google Scholar

[133]

R. Weder, $L^p$-$L^{\dot p}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), 37-68.  doi: 10.1006/jfan.1999.3507.  Google Scholar

[134]

M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[135]

K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.  Google Scholar

[136]

K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators III, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346.   Google Scholar

[1]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[2]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[3]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[7]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[12]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[16]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (16)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]