We give short survey on the question of asymptotic stability of ground states of nonlinear Schrödinger equations, focusing primarily on the so called nonlinear Fermi Golden Rule.
Citation: |
[1] |
R. Adami, D. Noja and C. Ortoleva, Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three, J. Math. Phys., 54 (2013), 013501, 33 pp.
doi: 10.1063/1.4772490.![]() ![]() ![]() |
[2] |
X. An and A. Soffer, Fermi's golden rule and $H^1$ scattering for nonlinear Klein–Gordon equations with metastable states, Discrete Contin. Dyn. Syst., 40 (2020), 331-373.
doi: 10.3934/dcds.2020013.![]() ![]() ![]() |
[3] |
G. Artbazar and K. Yajima, The $L^p$-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240.
![]() ![]() |
[4] |
R. Asad and G. Simpson, Embedded eigenvalues and the nonlinear Schrödinger equation, J. Math. Phys., 52 (2011), 033511, 26 pp.
doi: 10.1063/1.3567152.![]() ![]() ![]() |
[5] |
D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.
doi: 10.1007/s00220-013-1684-3.![]() ![]() ![]() |
[6] |
D. Bambusi and S. Cuccagna, On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.
doi: 10.1353/ajm.2011.0034.![]() ![]() ![]() |
[7] |
D. Bambusi and A. Maspero, Freezing of energy of a soliton in an external potential, Comm. Math. Phys., 344 (2016), 155-191.
doi: 10.1007/s00220-015-2570-y.![]() ![]() ![]() |
[8] |
J. T. Beale, Exact solitary water waves with capillary ripples at infinity, Comm. Pure Appl. Math., 44 (1991), 211-257.
doi: 10.1002/cpa.3160440204.![]() ![]() ![]() |
[9] |
M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.
doi: 10.1215/00127094-1433394.![]() ![]() ![]() |
[10] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and T. S. Ratiu, Dissipation induced instabilities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 37-90.
doi: 10.1016/S0294-1449(16)30196-2.![]() ![]() ![]() |
[11] |
C. Bonanno, Long time dynamics of highly concentrated solitary waves for the nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 717-735.
doi: 10.1016/j.jde.2014.10.002.![]() ![]() ![]() |
[12] |
M. Borghese, R. Jenkins and K. D. T.-R. McLaughlin, Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 887-920.
doi: 10.1016/j.anihpc.2017.08.006.![]() ![]() ![]() |
[13] |
N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.
doi: 10.1080/03605302.2012.665973.![]() ![]() ![]() |
[14] |
J. P. Boyd, Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics, Mathematics and its Applications, vol. 442, Generalized solitons and hyperasymptotic perturbation theory, Kluwer Academic Publishers, Dordrecht, 1998.
doi: 10.1007/978-1-4615-5825-5.![]() ![]() ![]() |
[15] |
V. S. Buslaev and V. E. Grikurov, Simulation of instability of bright solitons for NLS with saturating nonlinearity, Math. Comput. Simulation, 56 (2001), 539-546.
doi: 10.1016/S0378-4754(01)00323-8.![]() ![]() ![]() |
[16] |
V. S. Buslaev, A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger quation coupled to nonlinear oscillaton, Commun. Partial Differ. Equ., 33 (2008), 669-705.
doi: 10.1080/03605300801970937.![]() ![]() ![]() |
[17] |
V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, St. Petersburg Math. J., 4 (1993), 1111-1142.
![]() ![]() |
[18] |
V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear Evolution Equations, editor N.N. Uraltseva, Transl. Ser. 2, Amer. Math. Soc., Amer. Math. Soc., Providence, 164 (1995), 75–98.
doi: 10.1090/trans2/164/04.![]() ![]() ![]() |
[19] |
V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 20 (2003), 419-475.
doi: 10.1016/S0294-1449(02)00018-5.![]() ![]() ![]() |
[20] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, Courant Lecture Notes, American Mathematical Society, Providence, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
[21] |
S.-M. Chang, S. Gustafson, K. Nakanish and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111.
doi: 10.1137/050648389.![]() ![]() ![]() |
[22] |
A. Comech, Solutions with compact time spectrum to nonlinear Klein–Gordon and Schrödinger equations and the Titchmarsh theorem for partial convolution, Arnold Math. J., 5 (2019), 315-338.
doi: 10.1007/s40598-019-00122-x.![]() ![]() ![]() |
[23] |
A. Comech and S. Cuccagna, On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations, preprint, arXiv: 1801.04079.
![]() |
[24] |
A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), 1565-1607.
doi: 10.1002/cpa.10104.![]() ![]() ![]() |
[25] |
O. Costin, M. Huang and W. Schlag, On the spectral properties of $L_{\pm}$ in three dimensions, Nonlinearity, 25 (2012), 125-164.
doi: 10.1088/0951-7715/25/1/125.![]() ![]() ![]() |
[26] |
S. Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, in Dispersive Nonlinear Problems in Mathematical Physics, 21–57, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.
![]() ![]() |
[27] |
S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.
doi: 10.1007/s00220-011-1265-2.![]() ![]() ![]() |
[28] |
S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.
doi: 10.1090/S0002-9947-2014-05770-X.![]() ![]() ![]() |
[29] |
S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure App. Math., 54 (2001), 1110–1145. erratum Comm. Pure Appl. Math., 58 (2005), p. 147.
doi: 10.1002/cpa.1018.![]() ![]() ![]() |
[30] |
S. Cuccagna, On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15 (2003), 877-903.
doi: 10.1142/S0129055X03001849.![]() ![]() ![]() |
[31] |
S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non–trapping potential, J. Differential Eq., 256 (2014), 1395-1466.
doi: 10.1016/j.jde.2013.11.002.![]() ![]() ![]() |
[32] |
S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential, Anal. PDE, 8 (2015), 1289-1349.
doi: 10.2140/apde.2015.8.1289.![]() ![]() ![]() |
[33] |
S. Cuccagna and M. Maeda, On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.
doi: 10.3934/dcds.2015.35.3343.![]() ![]() ![]() |
[34] |
S. Cuccagna and M. Maeda, On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.
doi: 10.1007/s00332-016-9322-9.![]() ![]() ![]() |
[35] |
S. Cuccagna and M. Maeda, On Nonlinear profile decompositions and scattering for an NLS–ODE model, Int. Math. Res. Not. IMRN, 2020 (2020), 5679-5722.
doi: 10.1093/imrn/rny173.![]() ![]() ![]() |
[36] |
S. Cuccagna and M. Maeda, Long time oscillation of solutions of nonlinear Schrödinger equations near minimal mass ground state, J. Differential Equations, 268 (2020), 6416-6480.
doi: 10.1016/j.jde.2019.11.047.![]() ![]() ![]() |
[37] |
S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311-4331.
doi: 10.1137/19M1258402.![]() ![]() ![]() |
[38] |
S. Cuccagna, M. Maeda and Tuoc V. Phan, On small energy stabilization in the NLKG with a trapping potential, Nonlinear Anal., 146 (2016), 32-58.
doi: 10.1016/j.na.2016.08.009.![]() ![]() ![]() |
[39] |
S. Cuccagna and M. Maeda, Coordinates at small energy and refined profiles for the Nonlinear Schrödinger Equation, preprint, arXiv: 2004.01366.
![]() |
[40] |
S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77.
doi: 10.1007/s00220-008-0605-3.![]() ![]() ![]() |
[41] |
S. Cuccagna and D. E. Pelinovsky, The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., 93 (2014), 791-822.
doi: 10.1080/00036811.2013.866227.![]() ![]() ![]() |
[42] |
S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in the linearization of the NLS problem, Comm. Pure Appl. Math., 58 (2005), 1-29.
doi: 10.1002/cpa.20050.![]() ![]() ![]() |
[43] |
S. Cuccagna and M. Tarulli, On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential, J. Math. Anal. Appl., 436 (2016), 1332-1368.
doi: 10.1016/j.jmaa.2015.12.049.![]() ![]() ![]() |
[44] |
S. Cuccagna and M. Tarulli, On asymptotic stability in energy space of ground states of NLS in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1361-1386.
doi: 10.1016/j.anihpc.2008.12.001.![]() ![]() ![]() |
[45] |
S. Cuccagna and M. Tarulli, On asymptotic stability of standing waves of discrete Schrödinger equation in $\Bbb Z$, SIAM J. Math. Anal., 41 (2009), 861-885.
doi: 10.1137/080732821.![]() ![]() ![]() |
[46] |
K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Partial Differential Equations, 34 (2009), 1074-1113.
doi: 10.1080/03605300903076831.![]() ![]() ![]() |
[47] |
S. De Bièvre, F. Genoud and S. Rota Nodari, Orbital stability: Analysis meets geometry, Nonlinear Optical and Atomic Systems, Lecture Notes in Math., Springer, Cham, 2146 (2015), 147–273.
doi: 10.1007/978-3-319-19015-0_3.![]() ![]() ![]() |
[48] |
P. Deift and X. Zhou, Perturbation theory for infinite-dimensional integrable systems on the line. A case study, Acta Math., 188 (2002), 163-262.
doi: 10.1007/BF02392683.![]() ![]() ![]() |
[49] |
L. Demanet and W. Schlag, Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity, 19 (2006), 829-852.
doi: 10.1088/0951-7715/19/4/004.![]() ![]() ![]() |
[50] |
Q. Deng, A. Soffer and X. Yao, Soliton-potential interactions for nonlinear Schrödinger equation in $\Bbb R^3$, SIAM J. Math. Anal., 50 (2018), 5243-5292.
doi: 10.1137/17M1147275.![]() ![]() ![]() |
[51] |
T. Duyckaerts, C. Kenig and F. Merle, Classification of radial solutions of the focusing, energy–critical wave equation, Camb. J. Math., 1 (2013), 75-144.
doi: 10.4310/CJM.2013.v1.n1.a3.![]() ![]() ![]() |
[52] |
V. Fleurov and A. Soffer, Soliton in a well. Dynamics and tunneling, preprint, arXiv: 1305.4279v1.
![]() |
[53] |
J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), 613-642.
doi: 10.1007/s00220-004-1128-1.![]() ![]() ![]() |
[54] |
Z. Gang, Perturbation expansion and N-th order fermi golden rule of the nonlinear Schrödinger equations, J. Math. Phys., 48 (2007), p. 053509.
![]() |
[55] |
Z. Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. Math., 216 (2007), 443-490.
doi: 10.1016/j.aim.2007.04.018.![]() ![]() ![]() |
[56] |
Z. Gang and I. M. Sigal, Asymptotic stability of nonlinear Schrödinger equations with potential, Rev. Math. Phys., 17 (2005), 1143-1207.
doi: 10.1142/S0129055X05002522.![]() ![]() ![]() |
[57] |
Z. Gang and M. I. Weinstein, Dynamics of nonlinear Schrödinger/Gross-Pitaeskii equations; Mass transfer in systems with solitons and degenerate neutral modes, Anal. PDE, 1 (2008), 267-322.
doi: 10.2140/apde.2008.1.267.![]() ![]() ![]() |
[58] |
Z. Gang and M. I. Weinstein, Equipartition of mass in nonlinear Schrödinger/Gross-Pitaeskii equations, Appl. Math. Res. Express. AMRX, 2011 (2011), 123-181.
doi: 10.1093/amrx/abr001.![]() ![]() ![]() |
[59] |
R. H. Goodman, J. L. Marzuola and M. I. Weinstein, Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger/Gross-Pitaevskii equation, Discrete Contin. Dyn. Syst., 35 (2015), 225-246.
doi: 10.3934/dcds.2015.35.225.![]() ![]() ![]() |
[60] |
M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.
doi: 10.1002/cpa.3160430302.![]() ![]() ![]() |
[61] |
S. Gustafson, K. Nakanishi and T.-P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not., 66 (2004), 3559-3584.
doi: 10.1155/S1073792804132340.![]() ![]() ![]() |
[62] |
S. Gustafson and T. V. Phan, Stable directions for degenerate excited states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 43 (2011), 1716-1758.
doi: 10.1137/10079210X.![]() ![]() ![]() |
[63] |
P. Hagerty, A. M. Bloch and M. I. Weinstein, Radiation induced instability, SIAM J. Appl. Math., 64 (2003/04), 484-524.
doi: 10.1137/S0036139902418717.![]() ![]() ![]() |
[64] |
A. Hoffman and J. D. Wright, Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio, Phys. D, 358 (2017), 33-59.
doi: 10.1016/j.physd.2017.07.004.![]() ![]() ![]() |
[65] |
J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials, J. Nonlinear Sci., 17 (2007), 349-367.
doi: 10.1007/s00332-006-0807-9.![]() ![]() ![]() |
[66] |
J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.
doi: 10.1007/s00220-007-0261-z.![]() ![]() ![]() |
[67] |
J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, Int. Math. Res. Not. IMRN, 2008 (2008), Art. ID rnn026, 36.
doi: 10.1093/imrn/rnn026.![]() ![]() ![]() |
[68] |
J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Mod. Dyn., 1 (2007), 689-718.
doi: 10.3934/jmd.2007.1.689.![]() ![]() ![]() |
[69] |
J. S. Howland, On the Weinstein-Aronszajn formula, Arch. Rational Mech. Anal., 39 (1970), 323-339.
doi: 10.1007/BF00251295.![]() ![]() ![]() |
[70] |
J. S. Howland, Puiseux series for resonances at an embedded eigenvalue, Pacific J. Math., 55 (1974), 157-176.
doi: 10.2140/pjm.1974.55.157.![]() ![]() ![]() |
[71] |
B. L. G. Jonsson, J. Fröhlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), 621-660.
doi: 10.1007/s00023-006-0263-y.![]() ![]() ![]() |
[72] |
R. Johnson and X. B. Pan, On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 763-782.
doi: 10.1017/S030821050003095X.![]() ![]() ![]() |
[73] |
M. A. Johnson and J. D. Wright, Generalized solitary waves in the gravity–capillary Whitham equation, Stud. Appl. Math., 144 (2020), 102-130.
doi: 10.1111/sapm.12288.![]() ![]() ![]() |
[74] |
J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.
doi: 10.1002/cpa.3160440504.![]() ![]() ![]() |
[75] |
T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.
doi: 10.1007/BF01360915.![]() ![]() ![]() |
[76] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
[77] |
E. Kirr, P. G. Kevrekidis and D. E. Pelinovsky., Symmetry-breaking bifurcation in Nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.
doi: 10.1007/s00220-011-1361-3.![]() ![]() ![]() |
[78] |
E. W. Kirr, P. G. Kevrekidis, E. Shlizerman and M. I. Weinstein, Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross-Pitaevskii equations, SIAM J. Math. Anal., 40 (2008), 566-604.
doi: 10.1137/060678427.![]() ![]() ![]() |
[79] |
E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases, J. Funct. Anal., 257 (2009), 3691-3747.
doi: 10.1016/j.jfa.2009.08.010.![]() ![]() ![]() |
[80] |
E. Kirr and V. Natarajan, The global bifurcation picture for ground states in nonlinear Schr ödinger equations, preprint, arXiv: 1811.05716.
![]() |
[81] |
E. Kirr and A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schr ödinger equation including subcritical cases, J. Differential Equations, 247 (2009), 710-735.
doi: 10.1016/j.jde.2009.04.015.![]() ![]() ![]() |
[82] |
A. I. Komech, On attractor of a singular nonlinear U(1)-invariant Klein-Gordon equation, in Progress in Analysis, Vol. I, II (Berlin, 2001), pp. 599–611, World Sci. Publ., River Edge, NJ, 2003.
![]() ![]() |
[83] |
A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.
doi: 10.1016/j.anihpc.2008.03.005.![]() ![]() ![]() |
[84] |
A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction, SIAM J. Math. Anal., 42 (2010), 2944-2964.
doi: 10.1137/090772125.![]() ![]() ![]() |
[85] |
A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl., 93 (2010), 91-111.
doi: 10.1016/j.matpur.2009.08.011.![]() ![]() ![]() |
[86] |
A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.
doi: 10.3934/cpaa.2012.11.1063.![]() ![]() ![]() |
[87] |
M. Kowalczyk, Y. Martel and C. Muñoz, Kink dynamics in the $\phi ^4$ model: Asymptotic stability for odd perturbations in the energy space, J. Amer. Math. Soc., 30 (2017), 769-798.
doi: 10.1090/jams/870.![]() ![]() ![]() |
[88] |
M. Kowalczyk, Y. Martel and C. Muñoz, Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes, Jour. of the Europ. Math. Soc., to appear.
![]() |
[89] |
M. Kowalczyk, Y. Marte, C. Muñoz and H. Van Den Bosch, A sufficient condition for asymptotic stability of kinks in general $(1+1)$-scalar field models, preprint, arXiv: 2008.01276.
![]() |
[90] |
J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc., 19 (2006), 815-920.
doi: 10.1090/S0894-0347-06-00524-8.![]() ![]() ![]() |
[91] |
C. J. Lustri, Nanoptera and Stokes curves in the 2-periodic Fermi–Pasta–Ulam–Tsingou equation, Phys. D, 402 (2020), 132239, 13 pp.
doi: 10.1016/j.physd.2019.132239.![]() ![]() ![]() |
[92] |
C. J. Lustri and M. A. Porter, Nanoptera in a period-2 Toda chain, SIAM J. Appl. Dyn. Syst., 17 (2018), 1182-1212.
doi: 10.1137/16M108639X.![]() ![]() ![]() |
[93] |
Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391-427.
doi: 10.1007/s00208-007-0194-z.![]() ![]() ![]() |
[94] |
J. L. Marzuola, S. Raynor and G. Simpson, A system of ODEs for a perturbation of a minimal mass soliton, J. Nonlinear Sci., 20 (2010), 425-461.
doi: 10.1007/s00332-010-9064-z.![]() ![]() ![]() |
[95] |
J. L. Marzuola and G. Simpson, Spectral analysis for matrix Hamiltonian operators, Nonlinearity, 24 (2011), 389-429.
doi: 10.1088/0951-7715/24/2/003.![]() ![]() ![]() |
[96] |
J. L. Marzuola and M. I. Weinstein, Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations, Discrete Contin. Dyn. Syst., 28 (2010), 1505-1554.
doi: 10.3934/dcds.2010.28.1505.![]() ![]() ![]() |
[97] |
S. Masaki, J. Murphy and J. Segata, Stability of small solitary waves for the 1$d$ NLS with an attractive delta potential, Anal. PDE, 13 (2020), 1099-1128.
doi: 10.2140/apde.2020.13.1099.![]() ![]() ![]() |
[98] |
S. Masaki, J. Murphy and J. Segata, Modified scattering for the one-dimensional cubic NLS with a repulsive delta potential, Int. Math. Res. Not. IMRN, 2019 (2019), 7577-7603.
doi: 10.1093/imrn/rny011.![]() ![]() ![]() |
[99] |
S. Masaki, J. Murphy and J. Segata, Asymptotic stability of solitary waves for the $1d$ NLS with an attractive delta potential, preprint, arXiv: 2008.11645.
![]() |
[100] |
F. Merle and P. Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.
doi: 10.1090/S0894-0347-05-00499-6.![]() ![]() ![]() |
[101] |
F. Merle and P. Raphael, Sharp upper bound on the blow–up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., 13 (2003), 591-642.
doi: 10.1007/s00039-003-0424-9.![]() ![]() ![]() |
[102] |
F. Merle and P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., 161 (2005), 157-222.
doi: 10.4007/annals.2005.161.157.![]() ![]() ![]() |
[103] |
T. Mizumachi, Asymptotic stability of small solitons to 1D nonlinear Schr?dinger equations with potential, J. Math. Kyoto Univ., 48 (2008), 471-497.
doi: 10.1215/kjm/1250271380.![]() ![]() ![]() |
[104] |
T. Mizumachi, Asymptotic stability of small solitons for 2D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ., 47 (2007), 599-620.
doi: 10.1215/kjm/1250281026.![]() ![]() ![]() |
[105] |
C. Munoz, Sharp inelastic character of slowly varying NLS solitons, preprint, arXiv: 1202.5807.
![]() |
[106] |
C. Muñoz, On the soliton dynamics under slowly varying medium, for nonlinear Schrödinger equations, Math. Ann., 353 (2012), 867-943.
doi: 10.1007/s00208-011-0706-8.![]() ![]() ![]() |
[107] |
K. Nakanishi, Global dynamics below excited solitons for the nonlinear Schrödinger equation with a potential, J. Math. Soc. Japan, 69 (2017), 1353-1401.
doi: 10.2969/jmsj/06941353.![]() ![]() ![]() |
[108] |
K. Nakanishi, T. V. Phan and T.-P. Tsai, Small solutions of nonlinear Schrödinger equations near first excited states, J. Funct. Anal., 263 (2012), 703-781.
doi: 10.1016/j.jfa.2012.04.017.![]() ![]() ![]() |
[109] |
I. Naumkin and P. Raphaël, On travelling waves of the non linear Schrödinger equation escaping a potential well, Ann. Henri Poincaré, 21 (2020), 1677-1758.
doi: 10.1007/s00023-020-00897-2.![]() ![]() ![]() |
[110] |
D. E. Pelinovsky, Y. S. Kivshar and V. V. Afanasjev, Internal modes of envelope solitons, Phys. D, 116 (1998), 121-142.
doi: 10.1016/S0167-2789(98)80010-9.![]() ![]() ![]() |
[111] |
G. Perelman, Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 357-384.
doi: 10.1016/j.anihpc.2011.02.002.![]() ![]() ![]() |
[112] |
G. Perelman, A remark on soliton-potential interactions for nonlinear Schrödinger equations, Math. Res. Lett., 16 (2009), 477-486.
doi: 10.4310/MRL.2009.v16.n3.a8.![]() ![]() ![]() |
[113] |
G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.
doi: 10.1081/PDE-200033754.![]() ![]() ![]() |
[114] |
G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, 2 (2001), 605-673.
doi: 10.1007/PL00001048.![]() ![]() ![]() |
[115] |
C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations, J. Differential Equations, 141 (1997), 310-326.
doi: 10.1006/jdeq.1997.3345.![]() ![]() ![]() |
[116] |
I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS, preprint, arXiv: math/0309114v1.
![]() |
[117] |
A. Saalmann, Asymptotic stability of $N$-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ., 14 (2017), 455-485.
doi: 10.1142/S0219891617500151.![]() ![]() ![]() |
[118] |
W. Schlag, Stable manifolds for an orbitally unstable NLS, Ann. of Math., 169 (2009), 139-227.
doi: 10.4007/annals.2009.169.139.![]() ![]() ![]() |
[119] |
I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.
![]() ![]() |
[120] |
A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146.
doi: 10.1007/BF02096557.![]() ![]() ![]() |
[121] |
A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering II. The case of anisotropic potentials and data, J. Differential Equations, 98 (1992), 376-390.
doi: 10.1016/0022-0396(92)90098-8.![]() ![]() ![]() |
[122] |
A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.
doi: 10.1007/s002220050303.![]() ![]() ![]() |
[123] |
A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16 (2004), 977-1071.
doi: 10.1142/S0129055X04002175.![]() ![]() ![]() |
[124] |
C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.
doi: 10.1007/s00032-008-0089-9.![]() ![]() ![]() |
[125] |
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematica Sciences vol. 139, 1999, Springer, New York.
![]() ![]() |
[126] |
S. M. Sun, Existence of a generalized solitary wave solution for water with positive Bond number less than $1/3$, J. Math. Anal. Appl., 156 (1991), 471-504.
doi: 10.1016/0022-247X(91)90410-2.![]() ![]() ![]() |
[127] |
T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differential Equations, 192 (2003), 225-282.
doi: 10.1016/S0022-0396(03)00041-X.![]() ![]() ![]() |
[128] |
T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: Resonance dominated and radiation dominated solutions, Comm. Pure Appl. Math., 55 (2002), 153-216.
doi: 10.1002/cpa.3012.![]() ![]() ![]() |
[129] |
T.-P. Tsai and H.-T. Yau, Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not., 2002 (2002), 1629-1673.
doi: 10.1155/S1073792802201063.![]() ![]() ![]() |
[130] |
T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6 (2002), 107-139.
doi: 10.4310/ATMP.2002.v6.n1.a2.![]() ![]() ![]() |
[131] |
T.-P. Tsai and H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations, Comm. Partial Diffierential Equations, 27 (2002), 2363-2402.
doi: 10.1081/PDE-120016161.![]() ![]() ![]() |
[132] |
R. Weder, The $W_{k, p}$–continuity of the Schrödinger wave operators on the line, Comm. Math. Phys., 208 (1999), 507-520.
doi: 10.1007/s002200050767.![]() ![]() ![]() |
[133] |
R. Weder, $L^p$-$L^{\dot p}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), 37-68.
doi: 10.1006/jfan.1999.3507.![]() ![]() ![]() |
[134] |
M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034.![]() ![]() ![]() |
[135] |
K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.
doi: 10.2969/jmsj/04730551.![]() ![]() ![]() |
[136] |
K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators III, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346.
![]() ![]() |